Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2017_296_a15, author = {J. Pintz}, title = {Distribution of zeta zeros and the oscillation of the error term of the prime number theorem}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {207--219}, publisher = {mathdoc}, volume = {296}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2017_296_a15/} }
TY - JOUR AU - J. Pintz TI - Distribution of zeta zeros and the oscillation of the error term of the prime number theorem JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2017 SP - 207 EP - 219 VL - 296 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2017_296_a15/ LA - ru ID - TM_2017_296_a15 ER -
J. Pintz. Distribution of zeta zeros and the oscillation of the error term of the prime number theorem. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and combinatorial number theory, Tome 296 (2017), pp. 207-219. http://geodesic.mathdoc.fr/item/TM_2017_296_a15/
[1] Carlson F., “Über die Nullstellen der Dirichletschen Reihen und der Riemannschen $\zeta$-Funktion”, Ark. Mat. Astron. Fys., 15:20 (1921), 28 | Zbl
[2] Ingham A. E., The distribution of prime numbers, Univ. Press, Cambridge, 1932 | MR | Zbl
[3] Knapowski S., “On the mean values of certain functions in prime number theory”, Acta math. Acad. sci. Hung., 10 (1959), 375–390 | DOI | MR | Zbl
[4] von Koch H., “Sur un théorème concernant les nombres premiers”, Ark. Mat. Astron. Fys., 1 (1904), 481–488 | Zbl
[5] Littlewood J. E., “Sur la distribution des nombres premiers”, C. r. Acad. sci. Paris, 158 (1914), 1869–1872 | Zbl
[6] Phragmén E., “Sur le logarithme intégral et la fonction $f(x)$ de Riemann”, Stockh. Öfv., 48 (1891), 599–616 | Zbl
[7] Pintz J., “On the remainder term of the prime number formula. I: On a problem of Littlewood”, Acta arith., 36 (1980), 341–365 | MR | Zbl
[8] Pintz J., “On the remainder term of the prime number formula. II: On a theorem of Ingham”, Acta arith., 37 (1980), 209–220 | MR | Zbl
[9] Pintz J., “On the remainder term of the prime number formula. V: Effective mean value theorems”, Stud. sci. math. Hung., 15 (1980), 215–223 | MR | Zbl
[10] Riemann B., “Über die Anzahl der Primzahlen unter einer gegebenen Größe”, Monatsber. K. Preuß. Akad. Wiss. Berlin, 1859, 671–680
[11] Sós V. T., Turán P., “On some new theorems in the theory of Diophantine approximations”, Acta math. Acad. sci. Hung., 6 (1955), 241–255 | DOI | MR | Zbl
[12] Staś W., “Über die Umkehrung eines Satzes von Ingham”, Acta arith., 6 (1961), 435–446 | MR | Zbl
[13] Turán P., “On the remainder-term of the prime number formula. II”, Acta math. Acad. sci. Hung., 1 (1950), 155–166 | DOI | MR | Zbl
[14] Turán P., On a new method of analysis and its applications, With the assistance of G. Halász, J. Pintz. With a foreword by V. T. Sós, Pure Appl. Math., J. Wiley Sons, New York, 1984 | MR | Zbl
[15] Vinogradov I. M., Metod trigonometricheskikh summ v teorii chisel, Tr. MIAN, 23, Izd-vo AN SSSR, M.–L., 1947 | MR | Zbl
[16] Wiener N., “Tauberian theorems”, Ann. Math. Ser. 2, 33 (1932), 1–100 | DOI | MR | Zbl