Generalized Kloosterman sum with primes
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and combinatorial number theory, Tome 296 (2017), pp. 163-180
Voir la notice de l'article provenant de la source Math-Net.Ru
The work is devoted to generalized Kloosterman sums modulo a prime, i.e., trigonometric sums of the form $\sum _{p\le x}\exp \{2\pi i (a\overline {p}\,{+}\,F_k(p))/q\}$ and $\sum _{n\le x}\mu (n)\exp \{2\pi i (a\overline {n}\,{+}\,F_k(n))/q\}$, where $q$ is a prime number, $(a,q)=1$, $m\overline {m}\equiv 1\pmod q$, $F_k(u)$ is a polynomial of degree $k\ge 2$ with integer coefficients, and $p$ runs over prime numbers. An upper estimate with a power saving is obtained for the absolute values of such sums for $x\ge q^{1/2+\varepsilon }$.
@article{TM_2017_296_a12,
author = {M. A. Korolev},
title = {Generalized {Kloosterman} sum with primes},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {163--180},
publisher = {mathdoc},
volume = {296},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2017_296_a12/}
}
M. A. Korolev. Generalized Kloosterman sum with primes. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and combinatorial number theory, Tome 296 (2017), pp. 163-180. http://geodesic.mathdoc.fr/item/TM_2017_296_a12/