Generalized Kloosterman sum with primes
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and combinatorial number theory, Tome 296 (2017), pp. 163-180

Voir la notice de l'article provenant de la source Math-Net.Ru

The work is devoted to generalized Kloosterman sums modulo a prime, i.e., trigonometric sums of the form $\sum _{p\le x}\exp \{2\pi i (a\overline {p}\,{+}\,F_k(p))/q\}$ and $\sum _{n\le x}\mu (n)\exp \{2\pi i (a\overline {n}\,{+}\,F_k(n))/q\}$, where $q$ is a prime number, $(a,q)=1$, $m\overline {m}\equiv 1\pmod q$, $F_k(u)$ is a polynomial of degree $k\ge 2$ with integer coefficients, and $p$ runs over prime numbers. An upper estimate with a power saving is obtained for the absolute values of such sums for $x\ge q^{1/2+\varepsilon }$.
@article{TM_2017_296_a12,
     author = {M. A. Korolev},
     title = {Generalized {Kloosterman} sum with primes},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {163--180},
     publisher = {mathdoc},
     volume = {296},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2017_296_a12/}
}
TY  - JOUR
AU  - M. A. Korolev
TI  - Generalized Kloosterman sum with primes
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2017
SP  - 163
EP  - 180
VL  - 296
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2017_296_a12/
LA  - ru
ID  - TM_2017_296_a12
ER  - 
%0 Journal Article
%A M. A. Korolev
%T Generalized Kloosterman sum with primes
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2017
%P 163-180
%V 296
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2017_296_a12/
%G ru
%F TM_2017_296_a12
M. A. Korolev. Generalized Kloosterman sum with primes. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and combinatorial number theory, Tome 296 (2017), pp. 163-180. http://geodesic.mathdoc.fr/item/TM_2017_296_a12/