On some mean values for the divisor function and the Riemann zeta-function
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and combinatorial number theory, Tome 296 (2017), pp. 150-162
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\Delta (x)$ and $E(x)$ denote respectively the error terms in the summatory formula for the divisor function and in the mean square formula for $\zeta (s)$ on the critical line. We consider some general mean values for $\Delta (x)$ and $E(x)$ and discover interesting differences between these two functions. In particular, this yields evidence that $E(x)$ is more negative than $\Delta (x)$.
@article{TM_2017_296_a11,
author = {Kar-Lun Kong and Kai-Man Tsang},
title = {On some mean values for the divisor function and the {Riemann} zeta-function},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {150--162},
publisher = {mathdoc},
volume = {296},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2017_296_a11/}
}
TY - JOUR AU - Kar-Lun Kong AU - Kai-Man Tsang TI - On some mean values for the divisor function and the Riemann zeta-function JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2017 SP - 150 EP - 162 VL - 296 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2017_296_a11/ LA - ru ID - TM_2017_296_a11 ER -
Kar-Lun Kong; Kai-Man Tsang. On some mean values for the divisor function and the Riemann zeta-function. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and combinatorial number theory, Tome 296 (2017), pp. 150-162. http://geodesic.mathdoc.fr/item/TM_2017_296_a11/