Weil groups and the distribution of prime ideals
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and combinatorial number theory, Tome 296 (2017), pp. 140-149
Voir la notice de l'article provenant de la source Math-Net.Ru
We generalize Chebotarev's density theorem to Weil groups. Since the Artin–Weil conjecture on the integrality of the Artin–Hecke $L$-functions, constructed by A. Weil, has not been completely proved so far, we estimate the character sums both under and without the assumption of the validity of that conjecture.
@article{TM_2017_296_a10,
author = {T. Kleberger and B. Z. Moroz},
title = {Weil groups and the distribution of prime ideals},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {140--149},
publisher = {mathdoc},
volume = {296},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2017_296_a10/}
}
T. Kleberger; B. Z. Moroz. Weil groups and the distribution of prime ideals. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and combinatorial number theory, Tome 296 (2017), pp. 140-149. http://geodesic.mathdoc.fr/item/TM_2017_296_a10/