Nonholonomic dynamics and control of a~spherical robot with an internal omniwheel platform: theory and experiments
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mechanics, Tome 295 (2016), pp. 174-183.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present the results of theoretical and experimental investigations of the motion of a spherical robot on a plane. The motion is actuated by a platform with omniwheels placed inside the robot. The control of the spherical robot is based on a dynamic model in the nonholonomic statement expressed as equations of motion in quasivelocities with indeterminate coefficients. A number of experiments have been carried out that confirm the adequacy of the dynamic model proposed.
@article{TM_2016_295_a8,
     author = {Yu. L. Karavaev and A. A. Kilin},
     title = {Nonholonomic dynamics and control of a~spherical robot with an internal omniwheel platform: theory and experiments},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {174--183},
     publisher = {mathdoc},
     volume = {295},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2016_295_a8/}
}
TY  - JOUR
AU  - Yu. L. Karavaev
AU  - A. A. Kilin
TI  - Nonholonomic dynamics and control of a~spherical robot with an internal omniwheel platform: theory and experiments
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2016
SP  - 174
EP  - 183
VL  - 295
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2016_295_a8/
LA  - ru
ID  - TM_2016_295_a8
ER  - 
%0 Journal Article
%A Yu. L. Karavaev
%A A. A. Kilin
%T Nonholonomic dynamics and control of a~spherical robot with an internal omniwheel platform: theory and experiments
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2016
%P 174-183
%V 295
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2016_295_a8/
%G ru
%F TM_2016_295_a8
Yu. L. Karavaev; A. A. Kilin. Nonholonomic dynamics and control of a~spherical robot with an internal omniwheel platform: theory and experiments. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mechanics, Tome 295 (2016), pp. 174-183. http://geodesic.mathdoc.fr/item/TM_2016_295_a8/

[1] Ahn S.-S., Lee Y.-J., “Novel spherical robot with hybrid pendulum driving mechanism”, Adv. Mech. Eng., 2014 (2014), 456727

[2] Bizyaev I. A., Borisov A. V., Mamaev I. S., “The dynamics of nonholonomic systems consisting of a spherical shell with a moving rigid body inside”, Regul. Chaotic Dyn., 19:2 (2014), 198–213 ; Bizyaev I. A., Borisov A. V., Mamaev I. S., “Dinamika negolonomnykh sistem, sostoyaschikh iz sfericheskoi obolochki s podvizhnym tverdym telom vnutri”, Nelineinaya dinamika, 9:3 (2013), 547–566 | DOI | MR | Zbl | MR

[3] Borisov A. V., Karavaev Yu. L., Mamaev I. S., Erdakova N. N., Ivanova T. B., Tarasov V. V., “Experimental investigation of the motion of a body with an axisymmetric base sliding on a rough plane”, Regul. Chaotic Dyn., 20:5 (2015), 518–541 | DOI | MR | Zbl

[4] Borisov A. V., Kilin A. A., Mamaev I. S., “How to control the Chaplygin ball using rotors. II”, Regul. Chaotic Dyn., 18:1–2 (2013), 144–158 | DOI | MR | Zbl

[5] Borisov A. V., Kilin A. A., Mamaev I. S., “Dynamics and control of an omniwheel vehicle”, Regul. Chaotic Dyn., 20:2 (2015), 153–172 | DOI | MR | Zbl

[6] Borisov A. V., Mamaev I. S., “Uravneniya dvizheniya negolonomnykh sistem”, UMN, 70:6 (2015), 203–204 | DOI | MR | Zbl

[7] Borisov A. V., Mamaev I. S., “Zamechaniya o novykh modelyakh treniya i negolonomnoi mekhanike”, UFN, 185:12 (2015), 1339–1341 | DOI

[8] Borisov A. V., Mamaev I. S., Bizyaev I. A., “The Jacobi integral in nonholonomic mechanics”, Regul. Chaotic Dyn., 20:3 (2015), 383–400 | DOI | MR | Zbl

[9] Chase R., Pandya A., “A review of active mechanical driving principles of spherical robots”, Robotics, 1:1 (2012), 3–23 | DOI

[10] Chen W.-H., Chen C.-P., Yu W.-S., Lin C.-H., Lin P.-C., “Design and implementation of an omnidirectional spherical robot Omnicron”, Proc. 2012 IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics (Kaohsiung, Taiwan, 2012), IEEE, Piscataway, NJ, 2012, 719–724 | DOI

[11] Crossley V. A., book A literature review on the design of spherical rolling robots, Preprint, Carnegie Mellon Univ., Pittsburgh, PA, 2006

[12] Hogan F. R., Forbes J. R., “Modeling of spherical robots rolling on generic surfaces”, Multibody Syst. Dyn., 35:1 (2015), 91–109 | DOI | MR | Zbl

[13] Ivanova T. B., Pivovarova E. N., “Comments on the paper by A. V. Borisov, A. A. Kilin, I. S. Mamaev ‘How to control the Chaplygin ball using rotors. II’ ”, Regul. Chaotic Dyn., 19:1 (2014), 140–143 | DOI | MR | Zbl

[14] Karavaev Yu. L., Kilin A. A., “The dynamics and control of a spherical robot with an internal omniwheel platform”, Regul. Chaotic Dyn., 20:2 (2015), 134–152 | DOI | MR | Zbl

[15] Lee J., Park W., “Design and path planning for a spherical rolling robot”, Proc. ASME 2013 International Mechanical Engineering Congress and Exposition, ASME, 2013, Pap. IMECE2013-64994

[16] Svinin M., Bai Y., Yamamoto M., “Dynamic model and motion planning for a pendulum-actuated spherical rolling robot”, Robotics and automation, Proc. 2015 IEEE Int. Conf. (ICRA), IEEE, Piscataway, NJ, 2015, 656–661

[17] Ylikorpi T., Forsman P., Halme A., Saarinen J., “Unified representation of decoupled dynamic models for pendulum-driven ball-shaped robots”, Proc. 28th Eur. Conf. on Modelling and Simulation (Brescia, 2014), ECMS, 2014, 411–420 | DOI

[18] Ylikorpi T., Suomela J., “Ball-shaped robots”, Climbing and walking robots: Towards new applications, ed. H. Zhang, I-Tech Educ. Publ., Vienna, 2007, 235–256

[19] Yu T., Sun H., Jia Q., Zhang Y., Zhao W., “Stabilization and control of a spherical robot on an inclined plane”, Res. J. Appl. Sci. Eng. Technol., 5:6 (2013), 2289–2296

[20] Zhan Q., “Motion planning of a spherical mobile robot”, Motion and operation planning of robotic systems: Background and practical approaches, Springer, Cham, 2015, 361–381

[21] Zheng M., Zhan Q., Liu J., Cai Y., “Control of a spherical robot: Path following based on nonholonomic kinematics and dynamics”, Chin. J. Aeronaut., 24:3 (2011), 337–345 | DOI