Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2016_295_a4, author = {M. N. Davletshin and D. V. Treschev}, title = {Arnold diffusion in a~neighborhood of strong resonances}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {72--106}, publisher = {mathdoc}, volume = {295}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2016_295_a4/} }
TY - JOUR AU - M. N. Davletshin AU - D. V. Treschev TI - Arnold diffusion in a~neighborhood of strong resonances JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2016 SP - 72 EP - 106 VL - 295 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2016_295_a4/ LA - ru ID - TM_2016_295_a4 ER -
M. N. Davletshin; D. V. Treschev. Arnold diffusion in a~neighborhood of strong resonances. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mechanics, Tome 295 (2016), pp. 72-106. http://geodesic.mathdoc.fr/item/TM_2016_295_a4/
[1] Arnold V. I., “O neustoichivosti dinamicheskoi sistemy so mnogimi stepenyami svobody”, DAN SSSR, 156:1 (1964), 9–12 | MR | Zbl
[2] Arnold V. I., Kozlov V. V., Neishtadt A. I., Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki, URSS, M., 2002
[3] Aubry S., Abramovici G., “Chaotic trajectories in the standard map: The concept of anti-integrability”, Physica D, 43:2–3 (1990), 199–219 | DOI | MR | Zbl
[4] Berti M., Biasco L., Bolle P., “Drift in phase space: A new variational mechanism with optimal diffusion time”, J. Math. Pures Appl. Sér. 9, 82:6 (2003), 613–664 | DOI | MR | Zbl
[5] Berti M., Bolle P., “A functional analysis approach to Arnold diffusion”, Ann. Inst. Henri Poincaré. Anal. non linéaire, 19:4 (2002), 395–450 | DOI | MR | Zbl
[6] Bessi U., “An approach to Arnold's diffusion through the calculus of variations”, Nonlinear Anal. Theory Methods Appl., 26:6 (1996), 1115–1135 | DOI | MR | Zbl
[7] Bolotin S. V., Treschev D. V., “Remarks on the definition of hyperbolic tori of Hamiltonian systems”, Regul. Chaotic Dyn., 5:4 (2000), 401–412 | DOI | MR | Zbl
[8] Bolotin S. V., Treschev D. V., “Antiintegriruemyi predel”, UMN, 70:6 (2015), 3–62 | DOI | MR | Zbl
[9] Bounemoura A., Pennamen E., “Instability for a priori unstable Hamiltonian systems: A dynamical approach”, Discrete Contin. Dyn. Syst., 32:3 (2012), 753–793 | DOI | MR | Zbl
[10] Kassels Dzh. V. S., Vvedenie v teoriyu diofantovykh priblizhenii, Izd-vo inostr. lit., M., 1961 | MR
[11] Cheng C.-Q., Xue J., Arnold diffusion in nearly integrable Hamiltonian systems of arbitrary degrees of freedom, E-print, 2015, arXiv: 1503.04153v3[math.DS]
[12] Cheng C.-Q., Yan J., “Existence of diffusion orbits in a priori unstable Hamiltonian systems”, J. Diff. Geom., 67:3 (2004), 457–517 | MR | Zbl
[13] Cheng C.-Q., Yan J., “Arnold diffusion in Hamiltonian systems: A priori unstable case”, J. Diff. Geom., 82:2 (2009), 229–277 | MR | Zbl
[14] Chierchia L., Gallavotti G., “Drift and diffusion in phase space”, Ann. Inst. Henri Poincaré. Phys. théor., 60:1 (1994), 1–144 | MR | Zbl
[15] Delshams A., Huguet G., “Geography of resonances and Arnold diffusion in a priori unstable Hamiltonian systems”, Nonlinearity, 22:8 (2009), 1997–2077 | DOI | MR | Zbl
[16] Delshams A., Huguet G., “A geometric mechanism of diffusion: Rigorous verification in a priori unstable Hamiltonian systems”, J. Diff. Eqns., 250:5 (2011), 2601–2623 | DOI | MR | Zbl
[17] Delshams A., de la Llave R., Seara T. M., A geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem: Heuristics and rigorous verification on a model, Mem. Amer. Math. Soc., 179, Amer. Math. Soc., Providence, RI, 2006 | MR
[18] Delshams A., de la Llave R., Seara T. M., “Geometric properties of the scattering map of a normally hyperbolic invariant manifold”, Adv. Math., 217:3 (2008), 1096–1153 | DOI | MR | Zbl
[19] Fontich E., Martín P., “Arnold diffusion in perturbations of analytic integrable Hamiltonian systems”, Discrete Contin. Dyn. Syst., 7:1 (2001), 61–84 | MR | Zbl
[20] Gallavotti G., Gentile G., Mastropietro V., “Hamilton–Jacobi equation, heteroclinic chains and Arnol'd diffusion in three time scale systems”, Nonlinearity, 13:2 (2000), 323–340 | DOI | MR | Zbl
[21] Gidea M., Robinson C., “Obstruction argument for transition chains of tori interspersed with gaps”, Discrete Contin. Dyn. Syst. Ser. S, 2:2 (2009), 393–416 | DOI | MR | Zbl
[22] Graff S. M., “On the conservation of hyperbolic tori for Hamiltonian systems”, J. Diff. Eqns., 15:1 (1974), 1–69 | DOI | MR | Zbl
[23] Guardia M., Kaloshin V., Zhang J., “A second order expansion of the separatrix map for trigonometric perturbations of a priori unstable systems”, Commun. Math. Phys., 348:1 (2016), 321–361 | DOI | MR | Zbl
[24] Kaloshin V., Levi M., “Geometry of Arnold diffusion”, SIAM Rev., 50:4 (2008), 702–720 | DOI | MR | Zbl
[25] Kaloshin V., Zhang J., Zhang K., Normally hyperbolic invariant laminations and diffusive behaviour for the generalized Arnold example away from resonances, E-print, 2015, arXiv: 1511.04835[math.DS]
[26] Kaloshin V., Zhang K., A strong form of Arnold diffusion for two and a half degrees of freedom, E-print, 2012, arXiv: 1212.1150v2[math.DS]
[27] Kaloshin V., Zhang K., A strong form of Arnold diffusion for three and a half degrees of freedom, Preprint , Univ. Maryland, College Park, MD, 2014 http://www2.math.umd.edu/~vkaloshi/papers/announce-three-and-half.pdf
[28] Kaloshin V., Zhang K., Dynamics of the dominant Hamiltonian, with applications to Arnold diffusion, E-print, 2014, arXiv: 1410.1844v2[math.DS]
[29] Kaloshin V., Zhang K., “Arnold diffusion for smooth convex systems of two and a half degrees of freedom”, Nonlinearity, 28:8 (2015), 2699–2720 | DOI | MR | Zbl
[30] Nekhoroshev N. N., “Eksponentsialnaya otsenka vremeni ustoichivosti gamiltonovykh sistem, blizkikh k integriruemym”, UMN, 32:6 (1977), 5–66 | MR | Zbl
[31] Piftankin G. N., Treschev D. V., “Separatrisnoe otobrazhenie v gamiltonovykh sistemakh”, UMN, 62:2 (2007), 3–108 | DOI | MR | Zbl
[32] Treschev D., “Multidimensional symplectic separatrix maps”, J. Nonlinear Sci., 12:1 (2002), 27–58 | DOI | MR | Zbl
[33] Treschev D., “Trajectories in a neighbourhood of asymptotic surfaces of a priori unstable Hamiltonian systems”, Nonlinearity, 15:6 (2002), 2033–2052 | DOI | MR | Zbl
[34] Treschev D., “Evolution of slow variables in a priori unstable Hamiltonian systems”, Nonlinearity, 17:5 (2004), 1803–1841 | DOI | MR | Zbl
[35] Treschev D., “Arnold diffusion far from strong resonances in multidimensional a priori unstable Hamiltonian systems”, Nonlinearity, 25:9 (2012), 2717–2757 | DOI | MR | Zbl
[36] Treschev D., Zubelevich O., Introduction to the perturbation theory of Hamiltonian systems, Springer, Berlin, 2010 | MR | Zbl
[37] Zehnder E., “Generalized implicit function theorems with applications to some small divisor problems. I”, Commun. Pure Appl. Math., 28:1 (1975), 91–140 ; “II”, Commun. Pure Appl. Math., 29:1 (1976), 49–111 | DOI | MR | Zbl | DOI | MR | Zbl