On the application of the asymptotic method of global instability in aeroelasticity problems
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mechanics, Tome 295 (2016), pp. 292-320.

Voir la notice de l'article provenant de la source Math-Net.Ru

The asymptotic method of global instability developed by A. G. Kulikovskii is an effective tool for determining the eigenfrequencies and stability boundary of one-dimensional or multidimensional systems of sufficiently large finite length. The effectiveness of the method was demonstrated on a number of one-dimensional problems; and since the mid-2000s, this method has been used in aeroelasticity problems, which are not strictly one-dimensional: such is only the elastic part of the problem, while the gas flow occupies an unbounded domain. In the present study, the eigenfrequencies and stability boundaries predicted by the method of global instability are compared with the results of direct calculation of the spectra of the corresponding problems. The size of systems is determined starting from which the method makes a quantitatively correct prediction for the stability boundary.
@article{TM_2016_295_a16,
     author = {V. V. Vedeneev},
     title = {On the application of the asymptotic method of global instability in aeroelasticity problems},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {292--320},
     publisher = {mathdoc},
     volume = {295},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2016_295_a16/}
}
TY  - JOUR
AU  - V. V. Vedeneev
TI  - On the application of the asymptotic method of global instability in aeroelasticity problems
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2016
SP  - 292
EP  - 320
VL  - 295
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2016_295_a16/
LA  - ru
ID  - TM_2016_295_a16
ER  - 
%0 Journal Article
%A V. V. Vedeneev
%T On the application of the asymptotic method of global instability in aeroelasticity problems
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2016
%P 292-320
%V 295
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2016_295_a16/
%G ru
%F TM_2016_295_a16
V. V. Vedeneev. On the application of the asymptotic method of global instability in aeroelasticity problems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mechanics, Tome 295 (2016), pp. 292-320. http://geodesic.mathdoc.fr/item/TM_2016_295_a16/

[1] Aizin L. B., Maksimov V. P., “Ob ustoichivosti techeniya slabo szhimaemogo gaza v trube s modelnoi sherokhovatostyu”, PMM, 42:4 (1978), 650–655

[2] Bolotin V. V., “Dinamicheskii kraevoi effekt pri uprugikh kolebaniyakh plastinok”, Inzh. sb., 31 (1961), 3–14 | Zbl

[3] Doaré. O., de Langre E., “Local and global instability of fluid-conveying pipes on elastic foundations”, J. Fluids Struct., 16:1 (2002), 1–14 | DOI

[4] Doaré O., de Langre E., “The role of boundary conditions in the instability of one-dimensional systems”, Eur. J. Mech. B/Fluids, 25:6 (2006), 948–959 | DOI | MR | Zbl

[5] Echebarria B., Hakim V., Henry H., “Nonequilibrium ribbon model of twisted scroll waves”, Phys. Rev. Lett., 96:9 (2006), 098301 | DOI

[6] Kamenyarzh Ya. A., “O nekotorykh svoistvakh uravnenii modeli svyazannoi termoplastichnosti”, PMM, 36:6 (1972), 1100–1107

[7] Kulikovskii A. G., “Ob ustoichivosti odnorodnykh sostoyanii”, PMM, 30:1 (1966), 148–153

[8] Kulikovskii A. G., “Ob ustoichivosti techeniya Puazeilya i nekotorykh drugikh ploskoparallelnykh techenii v ploskoi trube bolshoi, no konechnoi dliny pri bolshikh chislakh Reinoldsa”, PMM, 30:5 (1966), 822–835

[9] Kulikovskii A. G., “Ustoichivost techenii slabo szhimaemoi zhidkosti v ploskoi trube bolshoi, no konechnoi dliny”, PMM, 32:1 (1968), 112–114

[10] Kulikovskii A. G., “O globalnoi neustoichivosti odnorodnykh techenii v neodnomernykh oblastyakh”, PMM, 70:2 (2006), 257–263 | MR

[11] Kulikovskii A. G., Shikina I. S., “Ob izgibnykh kolebaniyakh dlinnoi truby, zapolnennoi dvizhuscheisya zhidkostyu”, Izv. AN ArmSSR. Mekhanika, 41:1 (1988), 31–39 | MR

[12] Lifshits E. M., Pitaevskii L. P., Fizicheskaya kinetika, Teoreticheskaya fizika, 10, Nauka, M., 1979 | MR

[13] Miles J. W., The potential theory of unsteady supersonic flow, Univ. Press, Cambridge, 1959 ; Mails Dzh. U., Potentsialnaya teoriya neustanovivshikhsya sverkhzvukovykh techenii, Fizmatgiz, M., 1963 | MR | Zbl

[14] Nichols J. W., Chomaz J.-M., Schmid P. J., “Twisted absolute instability in lifted flames”, Phys. Fluids, 21:1 (2009), 015110 | DOI | Zbl

[15] Peake N., “On the unsteady motion of a long fluid-loaded elastic plate with mean flow”, J. Fluid Mech., 507 (2004), 335–366 | DOI | MR | Zbl

[16] Priede J., Gerbeth G., “Convective, absolute, and global instabilities of thermocapillary-buoyancy convection in extended layers”, Phys. Rev. E, 56:4 (1997), 4187–4199 | DOI | MR

[17] Priede J., Gerbeth G., “Absolute versus convective helical magnetorotational instability in a Taylor–Couette flow”, Phys. Rev. E, 79:4 (2009), 046310 | DOI | MR

[18] Shishaeva A., Vedeneev V., Aksenov A., “Nonlinear single-mode and multi-mode panel flutter oscillations at low supersonic speeds”, J. Fluids Struct., 56 (2015), 205–223 | DOI

[19] Shugai G. A., Yakubenko P. A., “Convective and absolute instability of a liquid jet in a longitudinal magnetic field”, Phys. Fluids, 9:7 (1997), 1928–1932 | DOI | MR | Zbl

[20] Tuerke F., Sciamarella D., Pastur L. R., Lusseyran F., Artana G., “Frequency-selection mechanism in incompressible open-cavity flows via reflected instability waves”, Phys. Rev. E, 91:1 (2015), 013005 | DOI

[21] Vedeneev V. V., “Flatter plastiny, imeyuschei formu shirokoi polosy, v sverkhzvukovom potoke gaza”, Izv. RAN. Mekhanika zhidkosti i gaza, 2005, no. 5, 155–169 | MR | Zbl

[22] Vedeneev V. V., “O vysokochastotnom flattere plastiny”, Izv. RAN. Mekhanika zhidkosti i gaza, 2006, no. 2, 163–172 | MR | Zbl

[23] Vedeneev V. V., “Vysokochastotnyi flatter pryamougolnoi plastiny”, Izv. RAN. Mekhanika zhidkosti i gaza, 2006, no. 4, 173–181 | MR | Zbl

[24] Vedeneev V. V., “Nelineinyi vysokochastotnyi flatter plastiny”, Izv. RAN. Mekhanika zhidkosti i gaza, 2007, no. 5, 197–208 | MR | Zbl

[25] Vedeneev V. V., “Chislennoe issledovanie sverkhzvukovogo flattera plastiny s ispolzovaniem tochnoi aerodinamicheskoi teorii”, Izv. RAN. Mekhanika zhidkosti i gaza, 2009, no. 2, 169–178 | Zbl

[26] Vedeneev V. V., “Issledovanie odnomodovogo flattera pryamougolnoi plastiny v sluchae peremennogo usileniya sobstvennoi mody vdol plastiny”, Izv. RAN. Mekhanika zhidkosti i gaza, 2010, no. 4, 163–174 | MR | Zbl

[27] Vedeneev V. V., “Panel flutter at low supersonic speeds”, J. Fluids Struct., 29 (2012), 79–96 | DOI

[28] Vedeneev V. V., “Predelnye tsikly kolebanii pri odnomodovom flattere plastiny”, PMM, 77:3 (2013), 355–370 | MR | Zbl

[29] Vedeneev V. V., Guvernyuk S. V., Zubkov A. F., Kolotnikov M. E., “Experimental observation of single mode panel flutter in supersonic gas flow”, J. Fluids Struct., 26:5 (2010), 764–779 | DOI

[30] Vedeneev V. V., Guvernyuk S. V., Zubkov A. F., Kolotnikov M. E., “Eksperimentalnoe issledovanie odnomodovogo panelnogo flattera v sverkhzvukovom potoke gaza”, Izv. RAN. Mekhanika zhidkosti i gaza, 2010, no. 2, 161–175

[31] Vedeneev V. V., Shitov S. V., “Flatter periodicheski podkreplennoi uprugoi polosy v potoke gaza s maloi sverkhzvukovoi skorostyu”, Izv. RAN. Mekhanika tverdogo tela, 2015, no. 3, 105–126

[32] Yakubenko P. A., “Global capillary instability of an inclined jet”, J. Fluid Mech., 346 (1997), 181–200 | DOI | MR | Zbl