Abel's theorem and B\"acklund transformations for the Hamilton--Jacobi equations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mechanics, Tome 295 (2016), pp. 261-291

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an algorithm for constructing auto-Bäcklund transformations for finite-dimensional Hamiltonian systems whose integration reduces to the inversion of the Abel map. In this case, using equations of motion, one can construct Abel differential equations and identify the sought Bäcklund transformation with the well-known equivalence relation between the roots of the Abel polynomial. As examples, we construct Bäcklund transformations for the Lagrange top, Kowalevski top, and Goryachev–Chaplygin top, which are related to hyperelliptic curves of genera 1 and 2, as well as for the Goryachev and Dullin–Matveev systems, which are related to trigonal curves in the plane.
@article{TM_2016_295_a15,
     author = {A. V. Tsiganov},
     title = {Abel's theorem and {B\"acklund} transformations for the {Hamilton--Jacobi} equations},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {261--291},
     publisher = {mathdoc},
     volume = {295},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2016_295_a15/}
}
TY  - JOUR
AU  - A. V. Tsiganov
TI  - Abel's theorem and B\"acklund transformations for the Hamilton--Jacobi equations
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2016
SP  - 261
EP  - 291
VL  - 295
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2016_295_a15/
LA  - ru
ID  - TM_2016_295_a15
ER  - 
%0 Journal Article
%A A. V. Tsiganov
%T Abel's theorem and B\"acklund transformations for the Hamilton--Jacobi equations
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2016
%P 261-291
%V 295
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2016_295_a15/
%G ru
%F TM_2016_295_a15
A. V. Tsiganov. Abel's theorem and B\"acklund transformations for the Hamilton--Jacobi equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mechanics, Tome 295 (2016), pp. 261-291. http://geodesic.mathdoc.fr/item/TM_2016_295_a15/