On first integrals of geodesic flows on a~two-torus
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mechanics, Tome 295 (2016), pp. 241-260.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a geodesic (or magnetic geodesic) flow, the problem of the existence of an additional (independent of the energy) first integral that is polynomial in momenta is studied. The relation of this problem to the existence of nontrivial solutions of stationary dispersionless limits of two-dimensional soliton equations is demonstrated. The nonexistence of an additional quadratic first integral is established for certain classes of magnetic geodesic flows.
@article{TM_2016_295_a14,
     author = {I. A. Taimanov},
     title = {On first integrals of geodesic flows on a~two-torus},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {241--260},
     publisher = {mathdoc},
     volume = {295},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2016_295_a14/}
}
TY  - JOUR
AU  - I. A. Taimanov
TI  - On first integrals of geodesic flows on a~two-torus
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2016
SP  - 241
EP  - 260
VL  - 295
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2016_295_a14/
LA  - ru
ID  - TM_2016_295_a14
ER  - 
%0 Journal Article
%A I. A. Taimanov
%T On first integrals of geodesic flows on a~two-torus
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2016
%P 241-260
%V 295
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2016_295_a14/
%G ru
%F TM_2016_295_a14
I. A. Taimanov. On first integrals of geodesic flows on a~two-torus. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mechanics, Tome 295 (2016), pp. 241-260. http://geodesic.mathdoc.fr/item/TM_2016_295_a14/

[1] Agapov S. V., “Ob integriruemom geodezicheskom potoke v magnitnom pole na dvumernom tore”, Sib. elektron. mat. izv., 12 (2015), 868–873 | Zbl

[2] Agapov S. V., Bialy M., Mironov A. E., Integrable magnetic geodesic flows on 2-torus: New example via quasi-linear system of PDEs, E-print, 2016, arXiv: 1605.04234[math.DS]

[3] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, 3-e izd., Nauka, M., 1989 | MR

[4] Babenko I. K., Nekhoroshev N. N., “O kompleksnykh strukturakh na dvumernykh torakh, dopuskayuschikh metriki s netrivialnym kvadratichnym integralom”, Mat. zametki, 58:5 (1995), 643–652 | MR | Zbl

[5] Byalyi M. L., “O polinomialnykh po impulsam pervykh integralakh dlya mekhanicheskoi sistemy na dvumernom tore”, Funkts. analiz i ego pril., 21:4 (1987), 64–65 | MR | Zbl

[6] Bialy M., Mironov A. E., “Rich quasi-linear system for integrable geodesic flows on 2-torus”, Discrete Contin. Dyn. Syst. A, 29:1 (2011), 81–90 | DOI | MR | Zbl

[7] Bialy M., Mironov A., “New semi-Hamiltonian hierarchy related to integrable magnetic flows on surfaces”, Cent. Eur. J. Math., 10:5 (2012), 1596–1604 | DOI | MR | Zbl

[8] Bialy M., Mironov A. E., “Integrable geodesic flows on 2-torus: Formal solutions and variational principle”, J. Geom. Phys., 87 (2015), 39–47 | DOI | MR | Zbl

[9] Birkgof Dzh. D., Dinamicheskie sistemy, Gostekhizdat, M.–L., 1941

[10] Bolotin S. V., “O pervykh integralakh sistem s giroskopicheskimi silami”, Vestn. Mosk. un-ta. Matematika. Mekhanika, 1984, no. 6, 75–82 | MR | Zbl

[11] Bolsinov A. V., Jovanović B., “Magnetic geodesic flows on coadjoint orbits”, J. Phys. A: Math. Gen., 39:16 (2006), L247–L252 | DOI | MR | Zbl

[12] Bolsinov A. V., Jovanović B., “Magnetic flows on homogeneous spaces”, Comment. math. Helv., 83:3 (2008), 679–700 | DOI | MR | Zbl

[13] Bolsinov A. V., Kozlov V. V., Fomenko A. T., “Printsip Mopertyui i geodezicheskie potoki na sfere, voznikayuschie iz integriruemykh sluchaev dinamiki tverdogo tela”, UMN, 50:3 (1995), 3–32 | MR | Zbl

[14] Bour E., “Sur l'intégration des équations différentielles partielles du premier et du second ordre”, J. Éc. Polytech., 22 (1862), 149–191

[15] Darbu Zh. G., Lektsii po obschei teorii poverkhnostei i geometricheskie prilozheniya analiza beskonechno malykh, v. 3, In-t kompyut. issled., M.–Izhevsk, 2013

[16] Denisova N. V., Kozlov V. V., “Polinomialnye integraly obratimykh mekhanicheskikh sistem s konfiguratsionnym prostranstvom v vide dvumernogo tora”, Mat. sb., 191:2 (2000), 43–63 | DOI | MR | Zbl

[17] Denisova N. V., Kozlov V. V., Treschev D. V., “Zamechaniya o polinomialnykh integralakh vysshikh stepenei obratimykh sistem s toricheskim prostranstvom konfiguratsii”, Izv. RAN. Ser. mat., 76:5 (2012), 57–72 | DOI | MR | Zbl

[18] Dorizzi B., Grammaticos B., Ramani A., Winternitz P., “Integrable Hamiltonian systems with velocity-dependent potentials”, J. Math. Phys., 26 (1985), 3070–3079 | DOI | MR

[19] Efimov D. I., “Magnitnyi geodezicheskii potok v odnorodnom pole na kompleksnom proektivnom prostranstve”, Sib. mat. zhurn., 45:3 (2004), 566–576 | MR | Zbl

[20] Efimov D. I., “Magnitnyi geodezicheskii potok na odnorodnom simplekticheskom mnogoobrazii”, Sib. matem. zhurn., 46:1 (2005), 106–118 | MR | Zbl

[21] Kolokoltsov V. N., “Geodezicheskie potoki na dvumernykh mnogoobraziyakh s dopolnitelnym polinomialnym po skorostyam pervym integralom”, Izv. AN SSSR. Ser. mat., 46:5 (1982), 994–1010 | MR | Zbl

[22] Kozlov V. V., “Topologicheskie prepyatstviya k integriruemosti naturalnykh mekhanicheskikh sistem”, DAN SSSR, 249:6 (1979), 1299–1302 | MR | Zbl

[23] Kozlov V. V., Denisova N. V., “Polinomialnye integraly geodezicheskikh potokov na dvumernom tore”, Mat. sb., 185:12 (1994), 49–64 | MR | Zbl

[24] Liouville J., “Sur quelques cas particuliers où les équations du mouvement d'un point matériel peuvent s'intégrer”, J. math. pures appl., 11 (1846), 345–378

[25] Massieu F., Sur les intégrales algébriques des problèmes de mécanique, Thèse doct. sci. math., Mallet-Bachelier, Paris, 1861

[26] Matveev V. S., Shevchishin V. V., “Differential invariants for cubic integrals of geodesic flows on surfaces”, J. Geom. Phys., 60:6–8 (2010), 833–856 | DOI | MR | Zbl

[27] Mironov A. E., “O polinomialnykh integralakh mekhanicheskoi sistemy na dvumernom tore”, Izv. RAN. Ser. mat., 74:4 (2010), 145–156 | DOI | MR | Zbl

[28] Novikov S. P., “Gamiltonov formalizm i mnogoznachnyi analog teorii Morsa”, UMN, 37:5 (1982), 3–49 | MR | Zbl

[29] Novikov S. P., Taimanov I. A., Sovremennye geometricheskie struktury i polya, 2-e izd., MTsNMO, M., 2014

[30] Pavlov M. V., Tsarev S. P., On local description of two-dimensional geodesic flows with a polynomial first integral, E-print, 2015, arXiv: 1509.03084[nlin.SI] | MR

[31] Sharafutdinov V. A., “Killingovy tenzornye polya na 2-tore”, Sib. mat. zhurn., 57:1 (2016), 199–221 | MR | Zbl

[32] Taimanov I. A., “Topologicheskie prepyatstviya k integriruemosti geodezicheskikh potokov na neodnosvyaznykh mnogoobraziyakh”, Izv. AN SSSR. Ser. mat., 51:2 (1987), 429–435 | MR | Zbl

[33] Taimanov I. A., “O topologicheskikh svoistvakh integriruemykh geodezicheskikh potokov”, Mat. zametki, 44:2 (1988), 283–284 | MR | Zbl

[34] Taimanov I. A., “O primere perekhoda ot khaosa k integriruemosti v magnitnykh geodezicheskikh potokakh”, Mat. zametki, 76:4 (2004), 632–634 | DOI | MR | Zbl

[35] Taimanov I. A., “On an integrable magnetic geodesic flow on the two-torus”, Regul. Chaotic Dyn., 20:6 (2015), 667–678 | DOI | MR | Zbl

[36] Veselov A. P., Novikov S. P., “Konechnozonnye dvumernye potentsialnye operatory Shrëdingera. Yavnye formuly i evolyutsionnye uravneniya”, DAN SSSR, 279:1 (1984), 20–24 | MR | Zbl