Asymptotic behavior of the spectrum of one-dimensional vibrations in a~layered medium consisting of elastic and Kelvin--Voigt viscoelastic materials
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mechanics, Tome 295 (2016), pp. 218-228.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work is devoted to the analysis of the spectral properties of a boundary value problem describing one-dimensional vibrations along the axis $Ox_1$ of periodically alternating $M$ elastic and $M$ viscoelastic layers parallel to the plane $Ox_2x_3$. It is shown that the spectrum of the boundary value problem is the union of roots of $M$ equations. The asymptotic behavior of the spectrum of the problem as $M\to\infty$ is analyzed; in particular, it is proved that not all sequences of eigenvalues of the original (prelimit) problem converge to eigenvalues of the corresponding homogenized (limit) problem.
@article{TM_2016_295_a12,
     author = {A. S. Shamaev and V. V. Shumilova},
     title = {Asymptotic behavior of the spectrum of one-dimensional vibrations in a~layered medium consisting of elastic and {Kelvin--Voigt} viscoelastic materials},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {218--228},
     publisher = {mathdoc},
     volume = {295},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2016_295_a12/}
}
TY  - JOUR
AU  - A. S. Shamaev
AU  - V. V. Shumilova
TI  - Asymptotic behavior of the spectrum of one-dimensional vibrations in a~layered medium consisting of elastic and Kelvin--Voigt viscoelastic materials
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2016
SP  - 218
EP  - 228
VL  - 295
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2016_295_a12/
LA  - ru
ID  - TM_2016_295_a12
ER  - 
%0 Journal Article
%A A. S. Shamaev
%A V. V. Shumilova
%T Asymptotic behavior of the spectrum of one-dimensional vibrations in a~layered medium consisting of elastic and Kelvin--Voigt viscoelastic materials
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2016
%P 218-228
%V 295
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2016_295_a12/
%G ru
%F TM_2016_295_a12
A. S. Shamaev; V. V. Shumilova. Asymptotic behavior of the spectrum of one-dimensional vibrations in a~layered medium consisting of elastic and Kelvin--Voigt viscoelastic materials. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mechanics, Tome 295 (2016), pp. 218-228. http://geodesic.mathdoc.fr/item/TM_2016_295_a12/

[1] Dubrovin B. A., Matveev V. B., Novikov S. P., “Nelineinye uravneniya tipa Kortevega–de Friza, konechnozonnye lineinye operatory i abelevy mnogoobraziya”, UMN, 31:1 (1976), 55–136 | MR | Zbl

[2] Bete G.,Zommerfeld A., Elektronnaya teoriya metallov, ONTI, L.–M., 1938

[3] Skriganov M. M., “Dokazatelstvo gipotezy Bete–Zommerfelda v razmernosti dva”, DAN SSSR, 248:1 (1979), 39–42 | MR | Zbl

[4] Skriganov M. M., “Mnogomernyi operator Shrëdingera s periodicheskim potentsialom”, Izv. AN SSSR. Ser. mat., 47:3 (1983), 659–687 | MR | Zbl

[5] Skriganov M. M., “The spectrum band structure of the three-dimensional Schrödinger operator with periodic potential”, Invent. math., 80 (1985), 107–121 | DOI | MR | Zbl

[6] Veliev O. A., “Asimptoticheskie formuly dlya sobstvennykh chisel periodicheskogo operatora Shrëdingera i gipoteza Bete–Zommerfelda”, Funkts. analiz i ego pril., 21:2 (1987), 1–15 | MR | Zbl

[7] Karpeshina Yu. E., Perturbation theory for the Schrödinger operator with a periodic potential, Lect. Notes Math., 1663, Springer, Berlin, 1997 | DOI | MR | Zbl

[8] Oleinik O. A., Iosifyan G. A., Shamaev A. S., Matematicheskie zadachi teorii silno neodnorodnykh uprugikh sred, Izd-vo MGU, M., 1990

[9] Zhikov V. V., “Ob odnom rasshirenii i primenenii metoda dvukhmasshtabnoi skhodimosti”, Mat. sb., 191:7 (2000), 31–72 | DOI | MR | Zbl

[10] Kosmodemyanskii D. A., Shamaev A. S., “Spektralnye svoistva nekotorykh zadach mekhaniki silno neodnorodnykh sred”, Izv. RAN. Mekhanika tverdogo tela, 2009, no. 6, 75–114

[11] Shamaev A. S., Shumilova V. V., “O spektre odnomernykh kolebanii v srede iz sloev uprugogo materiala i vyazkouprugogo materiala Kelvina–Foigta”, ZhVMiMF, 53:2 (2013), 282–290 | Zbl

[12] Shumilova V. V., “Spektralnyi analiz odnogo klassa integro-differentsialnykh uravnenii teorii vyazkouprugosti”, Problemy mat. analiza, 73, 2013, 167–172

[13] Gould H. W., Combinatorial identities: A standardized set of tables listing 500 binomial coefficient summations, H. W. Gould, Morgantown, WV, 1972 | Zbl