On the stability of periodic trajectories of a~planar Birkhoff billiard
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mechanics, Tome 295 (2016), pp. 206-217.

Voir la notice de l'article provenant de la source Math-Net.Ru

The inertial motion of a material point is analyzed in a plane domain bounded by two curves that are coaxial segments of an ellipse. The collisions of the point with the boundary curves are assumed to be absolutely elastic. There exists a periodic motion of the point that is described by a two-link trajectory lying on a straight line segment passed twice within the period. This segment is orthogonal to both boundary curves at its endpoints. The nonlinear problem of stability of this trajectory is analyzed. The stability and instability conditions are obtained for almost all values of two dimensionless parameters of the problem.
@article{TM_2016_295_a11,
     author = {A. P. Markeev},
     title = {On the stability of periodic trajectories of a~planar {Birkhoff} billiard},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {206--217},
     publisher = {mathdoc},
     volume = {295},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2016_295_a11/}
}
TY  - JOUR
AU  - A. P. Markeev
TI  - On the stability of periodic trajectories of a~planar Birkhoff billiard
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2016
SP  - 206
EP  - 217
VL  - 295
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2016_295_a11/
LA  - ru
ID  - TM_2016_295_a11
ER  - 
%0 Journal Article
%A A. P. Markeev
%T On the stability of periodic trajectories of a~planar Birkhoff billiard
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2016
%P 206-217
%V 295
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2016_295_a11/
%G ru
%F TM_2016_295_a11
A. P. Markeev. On the stability of periodic trajectories of a~planar Birkhoff billiard. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mechanics, Tome 295 (2016), pp. 206-217. http://geodesic.mathdoc.fr/item/TM_2016_295_a11/

[1] Abdrakhmanov A. M., “Ob ustoichivosti dvukhzvennykh periodicheskikh traektorii bilyarda na dvumernykh poverkhnostyakh postoyannoi krivizny”, Vestn. Mosk. un-ta. Matematika. Mekhanika, 1991, no. 4, 88–90 | MR | Zbl

[2] Arnold V. I., Kozlov V. V., Neishtadt A. I., Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki, URSS, M., 2002

[3] Babich V. M., Buldyrev V. S., Asimptoticheskie metody v zadachakh difraktsii korotkikh voln. Metod etalonnykh zadach, Nauka, M., 1972 | MR

[4] Birkhoff G. D., “On the periodic motions of dynamical systems”, Acta math., 50 (1927), 359–379 | DOI | MR | Zbl

[5] Birkhoff G. D., Dynamical systems, Colloq. Publ., 9, Amer. Math. Soc., New York, 1927 | DOI | Zbl

[6] Galperin G. A., Zemlyakov A. N., Matematicheskie bilyardy: Bilyardnye zadachi i smezhnye voprosy matematiki i mekhaniki, Nauka, M., 1990 | MR

[7] Ivanov A. P., Dinamika sistem s mekhanicheskimi soudareniyami, Mezhdunar. programma obrazovaniya, M., 1997 | MR

[8] Ivanov A. P., Sokolskii A. G., “Ob ustoichivosti neavtonomnoi gamiltonovoi sistemy pri parametricheskom rezonanse osnovnogo tipa”, PMM, 44:6 (1980), 963–970 | MR | Zbl

[9] Kamphorst S. O., Pinto-de-Carvalho S., “The first Birkhoff coefficient and the stability of 2-periodic orbits on billiards”, Exp. Math., 14:3 (2005), 299–306 | DOI | MR | Zbl

[10] Katok A. B., Khasselblat B., Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem, Faktorial, M., 1999

[11] Kozlov V. V., “Konstruktivnyi metod obosnovaniya teorii sistem s neuderzhivayuschimi svyazyami”, PMM, 52:6 (1988), 883–894 | MR | Zbl

[12] Kozlov V. V., “Dvuzvennye billiardnye traektorii: ekstremalnye svoistva i ustoichivost”, PMM, 64:6 (2000), 942–946 | MR | Zbl

[13] Kozlov V. V., “Zadacha ob ustoichivosti dvuzvennykh traektorii mnogomernogo billiarda Birkgofa”, Tr. MIAN, 273, 2011, 212–230 | MR | Zbl

[14] Kozlov V. V., Chigur I. I., “Ob ustoichivosti periodicheskikh traektorii prostranstvennogo billiarda”, PMM, 55:5 (1991), 713–717 | MR | Zbl

[15] Kozlov V. V., Treschev D. V., Billiardy. Geneticheskoe vvedenie v dinamiku sistem s udarami, Izd-vo Mosk. un-ta, M., 1991 | MR

[16] Malkin I. G., Teoriya ustoichivosti dvizheniya, Nauka, M., 1966 | MR

[17] Markeev A. A., Ustoichivost dvizheniya v nekotorykh zadachakh dinamiki sistem s neuderzhivayuschimi svyazyami, Dis. $\dots$ kand. fiz.-mat. nauk, MGU, M., 1995

[18] Markeev A. P., “O sokhranyayuschikh ploschad otobrazheniyakh i ikh primenenii v dinamike sistem s soudareniyami”, Izv. RAN. Mekhanika tverdogo tela, 1996, no. 2, 37–54 | MR

[19] Markeev A. P., “Ob odnom sposobe issledovaniya ustoichivosti polozhenii ravnovesiya gamiltonovykh sistem”, Izv. RAN. Mekhanika tverdogo tela, 2004, no. 6, 3–12

[20] Markeev A. P., “Ob odnom sposobe analiticheskogo predstavleniya otobrazhenii, sokhranyayuschikh ploschad”, PMM, 78:5 (2014), 611–624 | MR

[21] Markeev A. P., “Uproschenie struktury form tretei i chetvertoi stepenei v razlozhenii funktsii Gamiltona pri pomoschi lineinogo preobrazovaniya”, Nelineinaya dinamika, 10:4 (2014), 447–464 | Zbl

[22] Markeev A. P., “Ob ustoichivosti nepodvizhnykh tochek otobrazhenii, sokhranyayuschikh ploschad”, Nelineinaya dinamika, 11:3 (2015), 503–545 | Zbl

[23] Markeev A. P., “Ob ustoichivosti dvukhzvennoi traektorii paraboloidnogo bilyarda Birkgofa”, Nelineinaya dinamika, 12:1 (2016), 75–90 | Zbl

[24] Mozer Yu., Lektsii o gamiltonovykh sistemakh, Mir, M., 1973

[25] Puankare A., Izbr. tr., v. 3, Novye metody nebesnoi mekhaniki, Nauka, M., 1972

[26] Zigel K., Mozer Yu., Lektsii po nebesnoi mekhanike, NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2001

[27] Sinai Ya. G., “Dinamicheskie sistemy s uprugimi otrazheniyami. Ergodicheskie svoistva rasseivayuschikh bilyardov”, UMN, 25:2 (1970), 141–192 | MR | Zbl

[28] Tabachnikov S., Geometriya i billiardy, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2011

[29] Treschev D. V., “K voprosu ob ustoichivosti periodicheskikh traektorii bilyarda Birkgofa”, Vestn. Mosk. un-ta. Matematika. Mekhanika, 1988, no. 2, 44–50

[30] Treschev D., “Billiard map and rigid rotation”, Physica D, 255 (2013), 31–34 | DOI | MR | Zbl

[31] Treschev D. V., “Ob odnoi zadache sopryazheniya v dinamike bilyarda”, Tr. MIAN, 289, 2015, 309–317 | MR | Zbl