A self-similar wave problem in a~Prandtl--Reuss elastoplastic medium
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mechanics, Tome 295 (2016), pp. 195-205.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a self-similar piston problem in which stresses on the boundary of a half-space are changed instantaneously. The half-space is filled with a Prandtl–Reuss medium in a uniform stressed state. It is assumed that the formation of shock waves is possible in the medium. We prove the existence of a solution to the problem in the cases when two or all three stress components are changed at the initial moment.
@article{TM_2016_295_a10,
     author = {A. G. Kulikovskii and A. P. Chugainova},
     title = {A self-similar wave problem in {a~Prandtl--Reuss} elastoplastic medium},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {195--205},
     publisher = {mathdoc},
     volume = {295},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2016_295_a10/}
}
TY  - JOUR
AU  - A. G. Kulikovskii
AU  - A. P. Chugainova
TI  - A self-similar wave problem in a~Prandtl--Reuss elastoplastic medium
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2016
SP  - 195
EP  - 205
VL  - 295
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2016_295_a10/
LA  - ru
ID  - TM_2016_295_a10
ER  - 
%0 Journal Article
%A A. G. Kulikovskii
%A A. P. Chugainova
%T A self-similar wave problem in a~Prandtl--Reuss elastoplastic medium
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2016
%P 195-205
%V 295
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2016_295_a10/
%G ru
%F TM_2016_295_a10
A. G. Kulikovskii; A. P. Chugainova. A self-similar wave problem in a~Prandtl--Reuss elastoplastic medium. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mechanics, Tome 295 (2016), pp. 195-205. http://geodesic.mathdoc.fr/item/TM_2016_295_a10/

[1] Kulikovskii A. G., Chugainova A. P., “Ob oprokidyvanii voln Rimana v uprugoplasticheskikh sredakh s uprochneniem”, PMM, 77:4 (2013), 486–500 | MR

[2] Kulikovskii A. G., Chugainova A. P., “Udarnye volny v uprugoplasticheskikh sredakh so strukturoi, opredelyaemoi protsessom relaksatsii napryazhenii”, Tr. MIAN, 289, 2015, 178–194 | MR | Zbl

[3] Kulikovskii A. G., Chugainova A. P., “Issledovanie razryvov v resheniyakh uravnenii uprugoplasticheskoi sredy Prandtlya–Reissa”, ZhVMiMF, 56:4 (2016), 650–663 | MR | Zbl

[4] Balashov D. B., “O prostykh volnakh uravnenii Prandtlya–Reissa”, PMM, 56:1 (1992), 124–133 | MR | Zbl

[5] Godunov S. K., Romenskii E. I., Elementy mekhaniki sploshnykh sred i zakony sokhraneniya, Ucheb. posobie dlya fiz. i mat. spets. vuzov, Univ. ser., 4, Nauch. kn., Novosibirsk, 1998

[6] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, Nauka, M., 1968 | MR

[7] Ishlinskii A. Yu., Ivlev D. D., Matematicheskaya teoriya plastichnosti, Fizmatlit, M., 2001