Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2016_295_a1, author = {M. Bialy and A. E. Mironov}, title = {On fourth-degree polynomial integrals of the {Birkhoff} billiard}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {34--40}, publisher = {mathdoc}, volume = {295}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2016_295_a1/} }
TY - JOUR AU - M. Bialy AU - A. E. Mironov TI - On fourth-degree polynomial integrals of the Birkhoff billiard JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2016 SP - 34 EP - 40 VL - 295 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2016_295_a1/ LA - ru ID - TM_2016_295_a1 ER -
M. Bialy; A. E. Mironov. On fourth-degree polynomial integrals of the Birkhoff billiard. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mechanics, Tome 295 (2016), pp. 34-40. http://geodesic.mathdoc.fr/item/TM_2016_295_a1/
[1] Avila A., De Simoi J., Kaloshin V., An integrable deformation of an ellipse of small eccentricity is an ellipse, E-print, 2014, arXiv: 1412.2853[math.DS]
[2] Bialy M., “Convex billiards and a theorem by E. Hopf”, Math. Z., 214:1 (1993), 147–154 | DOI | MR | Zbl
[3] Bialy M., Mironov A. E., Angular billiard and algebraic Birkhoff conjecture, E-print, 2016, arXiv: 1601.03196[math.DG]
[4] Bolotin S. V., “Integriruemye bilyardy Birkgofa”, Vestn. Mosk. un-ta. Matematika. Mekhanika, 1990, no. 2, 33–36 | MR | Zbl
[5] Delshams A., Ramírez-Ros R., “Poincaré–Mel'nikov–Arnol'd method for analytic planar maps”, Nonlinearity, 9:1 (1996), 1–26 | DOI | MR | Zbl
[6] Dragović V., Radnović M., Poncelet porisms and beyond: Integrable billiards, hyperelliptic Jacobians and pencils of quadrics, Front. Math., Birkhäuser, Basel, 2011 | DOI | MR | Zbl
[7] Fischer G., Plane algebraic curves, Stud. Math. Libr., 15, Amer. Math. Soc., Providence, RI, 2001 | DOI | MR | Zbl
[8] Kaloshin V., Sorrentino A., On conjugacy of convex billiards, E-print, 2012, arXiv: 1203.1274[math.DS]
[9] Katok A., Hasselblatt B., Introduction to the modern theory of dynamical systems, Encycl. Math. Appl., 54, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl
[10] Kozlov V. V., Treschev D. V., Billiardy. Geneticheskoe vvedenie v dinamiku sistem s udarami, Izd-vo Mosk. un-ta, M., 1991 | MR
[11] Lazutkin V. F., “Suschestvovanie kaustik dlya billiardnoi zadachi v vypukloi oblasti”, Izv. AN SSSR. Ser. mat., 37:1 (1973), 186–216 | MR | Zbl
[12] Ramani A., Kalliterakis A., Grammaticos B., Dorizzi B., “Integrable curvilinear billiards”, Phys. Lett. A, 115:1–2 (1986), 25–28 | DOI | MR
[13] Tabachnikov S., “On the dual billiard problem”, Adv. Math., 115:2 (1995), 221–249 | DOI | MR | Zbl
[14] Tabachnikov S., Billiards, Panor. Synth., 1, Soc. math. France, Paris, 1995 | MR | Zbl
[15] Tabachnikov S., “On algebraically integrable outer billiards”, Pac. J. Math., 235:1 (2008), 89–92 | DOI | MR | Zbl
[16] Treschev D., “Billiard map and rigid rotation”, Physica D, 255 (2013), 31–34 | DOI | MR | Zbl
[17] Treschev D. V., “Ob odnoi zadache sopryazheniya v dinamike bilyarda”, Tr. MIAN, 289 (2015), 309–317 | DOI | MR | Zbl
[18] Veselov A. P., “Integriruemye otobrazheniya”, UMN, 46:5 (1991), 3–45 | MR | Zbl