An analog of Young's inequality for convolutions of functions for general Morrey-type spaces
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximation theory, and related problems of mathematical analysis, Tome 293 (2016), pp. 113-132
Voir la notice de l'article provenant de la source Math-Net.Ru
An analog of the classical Young's inequality for convolutions of functions is proved in the case of general global Morrey-type spaces. The form of this analog is different from Young's inequality for convolutions in the case of Lebesgue spaces. A separate analysis is performed for the case of periodic functions.
@article{TM_2016_293_a7,
author = {V. I. Burenkov and T. V. Tararykova},
title = {An analog of {Young's} inequality for convolutions of functions for general {Morrey-type} spaces},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {113--132},
publisher = {mathdoc},
volume = {293},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2016_293_a7/}
}
TY - JOUR AU - V. I. Burenkov AU - T. V. Tararykova TI - An analog of Young's inequality for convolutions of functions for general Morrey-type spaces JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2016 SP - 113 EP - 132 VL - 293 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2016_293_a7/ LA - ru ID - TM_2016_293_a7 ER -
%0 Journal Article %A V. I. Burenkov %A T. V. Tararykova %T An analog of Young's inequality for convolutions of functions for general Morrey-type spaces %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2016 %P 113-132 %V 293 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2016_293_a7/ %G ru %F TM_2016_293_a7
V. I. Burenkov; T. V. Tararykova. An analog of Young's inequality for convolutions of functions for general Morrey-type spaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximation theory, and related problems of mathematical analysis, Tome 293 (2016), pp. 113-132. http://geodesic.mathdoc.fr/item/TM_2016_293_a7/