Convergence and rate of convergence of some greedy algorithms in convex optimization
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximation theory, and related problems of mathematical analysis, Tome 293 (2016), pp. 333-345

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper gives a systematic study of the approximate versions of three greedy-type algorithms that are widely used in convex optimization. By an approximate version we mean the one where some of evaluations are made with an error. Importance of such versions of greedy-type algorithms in convex optimization and approximation theory was emphasized in previous literature.
@article{TM_2016_293_a21,
     author = {V. N. Temlyakov},
     title = {Convergence and rate of convergence of some greedy algorithms in convex optimization},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {333--345},
     publisher = {mathdoc},
     volume = {293},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2016_293_a21/}
}
TY  - JOUR
AU  - V. N. Temlyakov
TI  - Convergence and rate of convergence of some greedy algorithms in convex optimization
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2016
SP  - 333
EP  - 345
VL  - 293
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2016_293_a21/
LA  - ru
ID  - TM_2016_293_a21
ER  - 
%0 Journal Article
%A V. N. Temlyakov
%T Convergence and rate of convergence of some greedy algorithms in convex optimization
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2016
%P 333-345
%V 293
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2016_293_a21/
%G ru
%F TM_2016_293_a21
V. N. Temlyakov. Convergence and rate of convergence of some greedy algorithms in convex optimization. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximation theory, and related problems of mathematical analysis, Tome 293 (2016), pp. 333-345. http://geodesic.mathdoc.fr/item/TM_2016_293_a21/