On some properties of finite sums of ridge functions defined on convex subsets of~$\mathbb R^n$
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximation theory, and related problems of mathematical analysis, Tome 293 (2016), pp. 193-200

Voir la notice de l'article provenant de la source Math-Net.Ru

Necessary conditions are established for the continuity of finite sums of ridge functions defined on convex subsets $E$ of the space $\mathbb R^n$. It is shown that under some constraints imposed on the summed functions $\varphi _i$, in the case when $E$ is open, the continuity of the sum implies the continuity of all $\varphi _i$. In the case when $E$ is a convex body with nonsmooth boundary, a logarithmic estimate is obtained for the growth of the functions $\varphi _i$ in the neighborhoods of the boundary points of their domains of definition. In addition, an example is constructed that demonstrates the accuracy of the estimate obtained.
@article{TM_2016_293_a12,
     author = {S. V. Konyagin and A. A. Kuleshov},
     title = {On some properties of finite sums of ridge functions defined on convex subsets of~$\mathbb R^n$},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {193--200},
     publisher = {mathdoc},
     volume = {293},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2016_293_a12/}
}
TY  - JOUR
AU  - S. V. Konyagin
AU  - A. A. Kuleshov
TI  - On some properties of finite sums of ridge functions defined on convex subsets of~$\mathbb R^n$
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2016
SP  - 193
EP  - 200
VL  - 293
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2016_293_a12/
LA  - ru
ID  - TM_2016_293_a12
ER  - 
%0 Journal Article
%A S. V. Konyagin
%A A. A. Kuleshov
%T On some properties of finite sums of ridge functions defined on convex subsets of~$\mathbb R^n$
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2016
%P 193-200
%V 293
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2016_293_a12/
%G ru
%F TM_2016_293_a12
S. V. Konyagin; A. A. Kuleshov. On some properties of finite sums of ridge functions defined on convex subsets of~$\mathbb R^n$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximation theory, and related problems of mathematical analysis, Tome 293 (2016), pp. 193-200. http://geodesic.mathdoc.fr/item/TM_2016_293_a12/