Some boundary value problems in three-dimensional domains
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximation theory, and related problems of mathematical analysis, Tome 293 (2016), pp. 157-166.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some nonstandard boundary value problems are studied for the stationary Poisson system, Stokes system, and Navier–Stokes system. The problems under consideration are “intermediate” between the Dirichlet problem and Neumann problem. The well-posedness of these problems is proved.
@article{TM_2016_293_a10,
     author = {Yulii A. Dubinskii},
     title = {Some boundary value problems in three-dimensional domains},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {157--166},
     publisher = {mathdoc},
     volume = {293},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2016_293_a10/}
}
TY  - JOUR
AU  - Yulii A. Dubinskii
TI  - Some boundary value problems in three-dimensional domains
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2016
SP  - 157
EP  - 166
VL  - 293
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2016_293_a10/
LA  - ru
ID  - TM_2016_293_a10
ER  - 
%0 Journal Article
%A Yulii A. Dubinskii
%T Some boundary value problems in three-dimensional domains
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2016
%P 157-166
%V 293
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2016_293_a10/
%G ru
%F TM_2016_293_a10
Yulii A. Dubinskii. Some boundary value problems in three-dimensional domains. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximation theory, and related problems of mathematical analysis, Tome 293 (2016), pp. 157-166. http://geodesic.mathdoc.fr/item/TM_2016_293_a10/

[1] Dubinskii Yu.A., “O nekotorykh kraevykh zadachakh dlya sistemy uravnenii Puassona v trekhmernoi oblasti”, Dif. uravneniya., 49:5 (2013), 610–613 | MR | Zbl

[2] Dubinskii Yu.A., “Some coercive problems for the system of Poisson equations”, Russ. J. Math. Phys., 20:4 (2013), 402–412 | DOI | MR | Zbl

[3] Dubinskii Yu.A., “Ob odnoi kraevoi zadache dlya statsionarnoi sistemy uravnenii Stoksa”, Vestn. MEI., 2014, no. 1, 94–98 | MR

[4] Dubinskii Yu.A., “Granichnaya zadacha neprotekaniya dlya statsionarnoi sistemy uravnenii Stoksa”, DAN., 460:6 (2015), 634–637 | MR | Zbl

[5] Dubinskii Yu.A., “O zadache neprotekaniya dlya statsionarnoi sistemy Nave–Stoksa”, DAN., 463:5 (2015), 514–518 | MR | Zbl

[6] Temam R., Uravneniya Nave–Stoksa: Teoriya i chislennyi analiz, Mir, M., 1981 | MR

[7] Grishina A.S., Chislennaya realizatsiya odnogo podkhoda k resheniyu sistemy Stoksa, Dis. ... bakalavra prikl. matematiki, NIU “MEI”, M., 2015