Nonlinear trigonometric approximations of multivariate function classes
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximation theory, and related problems of mathematical analysis, Tome 293 (2016), pp. 8-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

Order-sharp estimates are established for the best $N$-term approximations of functions from Nikol'skii–Besov type classes $\mathrm B^{sm}_{pq}(\mathbb T^k)$ with respect to the multiple trigonometric system $\mathfrak T^{(k)}$ in the metric of $L_r(\mathbb T^k)$ for a number of relations between the parameters $s,p,q,r$, and $m$ ($s=(s_1,\dots,s_n)\in\mathbb R^n_+$, $1\leq p,q,r\leq\infty$, $m=(m_1,\dots,m_n)\in\mathbb N^n$, $k=m_1+\dots+m_n$). Constructive methods of nonlinear trigonometric approximation –variants of the so-called greedy algorithms – are used in the proofs of upper estimates.
@article{TM_2016_293_a1,
     author = {D. B. Bazarkhanov},
     title = {Nonlinear trigonometric approximations of multivariate function classes},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {8--42},
     publisher = {mathdoc},
     volume = {293},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2016_293_a1/}
}
TY  - JOUR
AU  - D. B. Bazarkhanov
TI  - Nonlinear trigonometric approximations of multivariate function classes
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2016
SP  - 8
EP  - 42
VL  - 293
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2016_293_a1/
LA  - ru
ID  - TM_2016_293_a1
ER  - 
%0 Journal Article
%A D. B. Bazarkhanov
%T Nonlinear trigonometric approximations of multivariate function classes
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2016
%P 8-42
%V 293
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2016_293_a1/
%G ru
%F TM_2016_293_a1
D. B. Bazarkhanov. Nonlinear trigonometric approximations of multivariate function classes. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximation theory, and related problems of mathematical analysis, Tome 293 (2016), pp. 8-42. http://geodesic.mathdoc.fr/item/TM_2016_293_a1/

[1] Bazarkhanov D.B., “Otsenki nekotorykh approksimativnykh kharakteristik prostranstv Nikolskogo–Besova obobschennoi smeshannoi gladkosti”, DAN, 426:1 (2009), 11–14 | MR | Zbl

[2] Bazarkhanov D.B., “Priblizhenie vspleskami i poperechniki Fure klassov periodicheskikh funktsii mnogikh peremennykh. I”, Tr. MIAN, 269 (2010), 8–30 | MR | Zbl

[3] Bazarkhanov D.B., “Priblizhenie vspleskami i poperechniki Fure klassov periodicheskikh funktsii mnogikh peremennykh. II”, Anal. math., 38:4 (2012), 249–289 | DOI | MR | Zbl

[4] Bazarkhanov D.B., “Nelineinye priblizheniya klassov periodicheskikh funktsii mnogikh peremennykh”, Tr. MIAN, 284 (2014), 8–37 | MR | Zbl

[5] Belinskii E.S., “Priblizhenie “plavayuschei” sistemoi eksponent na klassakh periodicheskikh gladkikh funktsii”, Tr. MIAN., 180 (1987), 46–47

[6] Belinskii E.S., “Priblizhenie “plavayuschei” sistemoi eksponent na klassakh gladkikh periodicheskikh funktsii”, Mat. sb., 132:1 (1987), 20–27 | MR

[7] Belinskii E.S., “Decomposition theorems and approximation by a “floating” system of exponentials”, Trans. Amer. Math. Soc., 350:1 (1998), 43–53 | DOI | MR | Zbl

[8] DeVore R.A., “Nonlinear approximation”, Acta numer., 7 (1998), 51–150 | DOI | MR | Zbl

[9] DeVore R.A., Temlyakov V.N., “Nonlinear approximation by trigonometric sums”, J. Fourier Anal. Appl., 2:1 (1995), 29–48 | DOI | MR | Zbl

[10] Dilworth S.J., Kutzarova D., Temlyakov V.N., “Convergence of some greedy algorithms in Banach spaces”, J. Fourier Anal. Appl., 8:5 (2002), 489–505 | DOI | MR | Zbl

[11] Ismagilov R.S., “Poperechniki mnozhestv v lineinykh normirovannykh prostranstvakh i priblizhenie funktsii trigonometricheskimi mnogochlenami”, UMN., 29:3 (1974), 161–178 | MR | Zbl

[12] Kashin B.S., Saakyan A.A., Ortogonalnye ryady, 2-e izd., Izd-vo AFTs, M., 1999 | MR

[13] Kashin B.S., Temlyakov V.N., “O nailuchshikh $m$-chlennykh priblizheniyakh i entropii mnozhestv v prostranstve $L^1$”, Mat. zametki., 56:5 (1994), 57–86 | MR | Zbl

[14] Korneichuk N.P., Ekstremalnye zadachi teorii priblizheniya, Nauka, M., 1976 | MR

[15] Meyer Y., Wavelets and operators, Cambridge Stud. Adv. Math., 37, Cambridge Univ. Press, Cambridge, 1992 | MR | Zbl

[16] Nikolskii S.M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya., 2-e izd., Nauka, M., 1977 | MR

[17] Romanyuk A.S., “Nailuchshie $M$-chlennye trigonometricheskie priblizheniya klassov Besova periodicheskikh funktsii mnogikh peremennykh”, Izv. RAN. Ser. mat., 67:2 (2003), 61–100 | DOI | MR | Zbl

[18] Romanyuk A.S., “Nailuchshie trigonometricheskie priblizheniya klassov periodicheskikh funktsii mnogikh peremennykh v ravnomernoi metrike”, Mat. zametki., 82:2 (2007), 247–261 | DOI | MR | Zbl

[19] Schmeisser H.-J., Triebel H., Topics in Fourier analysis and function spaces, J. Wiley Sons, Chichester, 1987 | MR | Zbl

[20] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974

[21] Stechkin S.B., “Ob absolyutnoi skhodimosti ortogonalnykh ryadov”, DAN SSSR., 102:1 (1955), 37–40 | Zbl

[22] Temlyakov V.N., “O priblizhenii periodicheskikh funktsii mnogikh peremennykh”, DAN SSSR., 279:2 (1984), 301–305 | MR | Zbl

[23] Temlyakov V.N., Priblizhenie funktsii s ogranichennoi smeshannoi proizvodnoi, Tr. MIAN, 178, Nauka, M., 1986 | MR | Zbl

[24] Temlyakov V.N., “Nelineinye poperechniki po Kolmogorovu”, Mat. zametki., 63:6 (1998), 891–902 | DOI | MR | Zbl

[25] Temlyakov V.N., “Nonlinear methods of approximation”, Found. Comput. Math., 3:1 (2003), 33–107 | DOI | MR | Zbl

[26] Temlyakov V.N., “Greedy-type approximation in Banach spaces and applications”, Constr. Approx., 21:2 (2005), 257–292 | DOI | MR | Zbl

[27] Temlyakov V.N., “Greedy approximation”, Acta numer., 17 (2008), 235–409 | DOI | MR | Zbl

[28] Temlyakov V.N., Greedy approximation, Cambridge Monogr. Appl. Comput. Math., 20, Cambridge Univ. Press, Cambridge, 2011 | MR | Zbl

[29] Temlyakov V.N., “Sparse approximation and recovery by greedy algorithms in Banach spaces”, Forum Math. Sigma, 2 (2014), e12 | DOI | MR | Zbl

[30] Temlyakov V.N., “Konstruktivnye razrezhennye trigonometricheskie priblizheniya i drugie zadachi dlya funktsii smeshannoi gladkosti”, Mat. sb., 206:11 (2015), 131–160 | DOI | MR

[31] Temlyakov V.N., Constructive sparse trigonometric approximation for functions with small mixed smoothness, E-print, 2015, arXiv: 1503.00282 [math.NA]

[32] Temlyakov V., Sparse approximation with bases, Birkhäuser, Basel, 2015 | MR | Zbl

[33] Tribel Kh., Teoriya funktsionalnykh prostranstv, Mir, M., 1986 | MR