Nonlinear trigonometric approximations of multivariate function classes
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximation theory, and related problems of mathematical analysis, Tome 293 (2016), pp. 8-42
Voir la notice de l'article provenant de la source Math-Net.Ru
Order-sharp estimates are established for the best $N$-term approximations of functions from Nikol'skii–Besov type classes $\mathrm B^{sm}_{pq}(\mathbb T^k)$ with respect to the multiple trigonometric system $\mathfrak T^{(k)}$ in the metric of $L_r(\mathbb T^k)$ for a number of relations between the parameters $s,p,q,r$, and $m$ ($s=(s_1,\dots,s_n)\in\mathbb R^n_+$, $1\leq p,q,r\leq\infty$, $m=(m_1,\dots,m_n)\in\mathbb N^n$, $k=m_1+\dots+m_n$). Constructive methods of nonlinear trigonometric approximation –variants of the so-called greedy algorithms – are used in the proofs of upper estimates.
@article{TM_2016_293_a1,
author = {D. B. Bazarkhanov},
title = {Nonlinear trigonometric approximations of multivariate function classes},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {8--42},
publisher = {mathdoc},
volume = {293},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2016_293_a1/}
}
TY - JOUR AU - D. B. Bazarkhanov TI - Nonlinear trigonometric approximations of multivariate function classes JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2016 SP - 8 EP - 42 VL - 293 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2016_293_a1/ LA - ru ID - TM_2016_293_a1 ER -
D. B. Bazarkhanov. Nonlinear trigonometric approximations of multivariate function classes. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximation theory, and related problems of mathematical analysis, Tome 293 (2016), pp. 8-42. http://geodesic.mathdoc.fr/item/TM_2016_293_a1/