Nonlinear trigonometric approximations of multivariate function classes
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximation theory, and related problems of mathematical analysis, Tome 293 (2016), pp. 8-42

Voir la notice de l'article provenant de la source Math-Net.Ru

Order-sharp estimates are established for the best $N$-term approximations of functions from Nikol'skii–Besov type classes $\mathrm B^{sm}_{pq}(\mathbb T^k)$ with respect to the multiple trigonometric system $\mathfrak T^{(k)}$ in the metric of $L_r(\mathbb T^k)$ for a number of relations between the parameters $s,p,q,r$, and $m$ ($s=(s_1,\dots,s_n)\in\mathbb R^n_+$, $1\leq p,q,r\leq\infty$, $m=(m_1,\dots,m_n)\in\mathbb N^n$, $k=m_1+\dots+m_n$). Constructive methods of nonlinear trigonometric approximation –variants of the so-called greedy algorithms – are used in the proofs of upper estimates.
@article{TM_2016_293_a1,
     author = {D. B. Bazarkhanov},
     title = {Nonlinear trigonometric approximations of multivariate function classes},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {8--42},
     publisher = {mathdoc},
     volume = {293},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2016_293_a1/}
}
TY  - JOUR
AU  - D. B. Bazarkhanov
TI  - Nonlinear trigonometric approximations of multivariate function classes
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2016
SP  - 8
EP  - 42
VL  - 293
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2016_293_a1/
LA  - ru
ID  - TM_2016_293_a1
ER  - 
%0 Journal Article
%A D. B. Bazarkhanov
%T Nonlinear trigonometric approximations of multivariate function classes
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2016
%P 8-42
%V 293
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2016_293_a1/
%G ru
%F TM_2016_293_a1
D. B. Bazarkhanov. Nonlinear trigonometric approximations of multivariate function classes. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximation theory, and related problems of mathematical analysis, Tome 293 (2016), pp. 8-42. http://geodesic.mathdoc.fr/item/TM_2016_293_a1/