Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2016_293_a1, author = {D. B. Bazarkhanov}, title = {Nonlinear trigonometric approximations of multivariate function classes}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {8--42}, publisher = {mathdoc}, volume = {293}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2016_293_a1/} }
TY - JOUR AU - D. B. Bazarkhanov TI - Nonlinear trigonometric approximations of multivariate function classes JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2016 SP - 8 EP - 42 VL - 293 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2016_293_a1/ LA - ru ID - TM_2016_293_a1 ER -
D. B. Bazarkhanov. Nonlinear trigonometric approximations of multivariate function classes. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximation theory, and related problems of mathematical analysis, Tome 293 (2016), pp. 8-42. http://geodesic.mathdoc.fr/item/TM_2016_293_a1/
[1] Bazarkhanov D.B., “Otsenki nekotorykh approksimativnykh kharakteristik prostranstv Nikolskogo–Besova obobschennoi smeshannoi gladkosti”, DAN, 426:1 (2009), 11–14 | MR | Zbl
[2] Bazarkhanov D.B., “Priblizhenie vspleskami i poperechniki Fure klassov periodicheskikh funktsii mnogikh peremennykh. I”, Tr. MIAN, 269 (2010), 8–30 | MR | Zbl
[3] Bazarkhanov D.B., “Priblizhenie vspleskami i poperechniki Fure klassov periodicheskikh funktsii mnogikh peremennykh. II”, Anal. math., 38:4 (2012), 249–289 | DOI | MR | Zbl
[4] Bazarkhanov D.B., “Nelineinye priblizheniya klassov periodicheskikh funktsii mnogikh peremennykh”, Tr. MIAN, 284 (2014), 8–37 | MR | Zbl
[5] Belinskii E.S., “Priblizhenie “plavayuschei” sistemoi eksponent na klassakh periodicheskikh gladkikh funktsii”, Tr. MIAN., 180 (1987), 46–47
[6] Belinskii E.S., “Priblizhenie “plavayuschei” sistemoi eksponent na klassakh gladkikh periodicheskikh funktsii”, Mat. sb., 132:1 (1987), 20–27 | MR
[7] Belinskii E.S., “Decomposition theorems and approximation by a “floating” system of exponentials”, Trans. Amer. Math. Soc., 350:1 (1998), 43–53 | DOI | MR | Zbl
[8] DeVore R.A., “Nonlinear approximation”, Acta numer., 7 (1998), 51–150 | DOI | MR | Zbl
[9] DeVore R.A., Temlyakov V.N., “Nonlinear approximation by trigonometric sums”, J. Fourier Anal. Appl., 2:1 (1995), 29–48 | DOI | MR | Zbl
[10] Dilworth S.J., Kutzarova D., Temlyakov V.N., “Convergence of some greedy algorithms in Banach spaces”, J. Fourier Anal. Appl., 8:5 (2002), 489–505 | DOI | MR | Zbl
[11] Ismagilov R.S., “Poperechniki mnozhestv v lineinykh normirovannykh prostranstvakh i priblizhenie funktsii trigonometricheskimi mnogochlenami”, UMN., 29:3 (1974), 161–178 | MR | Zbl
[12] Kashin B.S., Saakyan A.A., Ortogonalnye ryady, 2-e izd., Izd-vo AFTs, M., 1999 | MR
[13] Kashin B.S., Temlyakov V.N., “O nailuchshikh $m$-chlennykh priblizheniyakh i entropii mnozhestv v prostranstve $L^1$”, Mat. zametki., 56:5 (1994), 57–86 | MR | Zbl
[14] Korneichuk N.P., Ekstremalnye zadachi teorii priblizheniya, Nauka, M., 1976 | MR
[15] Meyer Y., Wavelets and operators, Cambridge Stud. Adv. Math., 37, Cambridge Univ. Press, Cambridge, 1992 | MR | Zbl
[16] Nikolskii S.M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya., 2-e izd., Nauka, M., 1977 | MR
[17] Romanyuk A.S., “Nailuchshie $M$-chlennye trigonometricheskie priblizheniya klassov Besova periodicheskikh funktsii mnogikh peremennykh”, Izv. RAN. Ser. mat., 67:2 (2003), 61–100 | DOI | MR | Zbl
[18] Romanyuk A.S., “Nailuchshie trigonometricheskie priblizheniya klassov periodicheskikh funktsii mnogikh peremennykh v ravnomernoi metrike”, Mat. zametki., 82:2 (2007), 247–261 | DOI | MR | Zbl
[19] Schmeisser H.-J., Triebel H., Topics in Fourier analysis and function spaces, J. Wiley Sons, Chichester, 1987 | MR | Zbl
[20] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974
[21] Stechkin S.B., “Ob absolyutnoi skhodimosti ortogonalnykh ryadov”, DAN SSSR., 102:1 (1955), 37–40 | Zbl
[22] Temlyakov V.N., “O priblizhenii periodicheskikh funktsii mnogikh peremennykh”, DAN SSSR., 279:2 (1984), 301–305 | MR | Zbl
[23] Temlyakov V.N., Priblizhenie funktsii s ogranichennoi smeshannoi proizvodnoi, Tr. MIAN, 178, Nauka, M., 1986 | MR | Zbl
[24] Temlyakov V.N., “Nelineinye poperechniki po Kolmogorovu”, Mat. zametki., 63:6 (1998), 891–902 | DOI | MR | Zbl
[25] Temlyakov V.N., “Nonlinear methods of approximation”, Found. Comput. Math., 3:1 (2003), 33–107 | DOI | MR | Zbl
[26] Temlyakov V.N., “Greedy-type approximation in Banach spaces and applications”, Constr. Approx., 21:2 (2005), 257–292 | DOI | MR | Zbl
[27] Temlyakov V.N., “Greedy approximation”, Acta numer., 17 (2008), 235–409 | DOI | MR | Zbl
[28] Temlyakov V.N., Greedy approximation, Cambridge Monogr. Appl. Comput. Math., 20, Cambridge Univ. Press, Cambridge, 2011 | MR | Zbl
[29] Temlyakov V.N., “Sparse approximation and recovery by greedy algorithms in Banach spaces”, Forum Math. Sigma, 2 (2014), e12 | DOI | MR | Zbl
[30] Temlyakov V.N., “Konstruktivnye razrezhennye trigonometricheskie priblizheniya i drugie zadachi dlya funktsii smeshannoi gladkosti”, Mat. sb., 206:11 (2015), 131–160 | DOI | MR
[31] Temlyakov V.N., Constructive sparse trigonometric approximation for functions with small mixed smoothness, E-print, 2015, arXiv: 1503.00282 [math.NA]
[32] Temlyakov V., Sparse approximation with bases, Birkhäuser, Basel, 2015 | MR | Zbl
[33] Tribel Kh., Teoriya funktsionalnykh prostranstv, Mir, M., 1986 | MR