Frattini and related subgroups of mapping class groups
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebra, geometry, and number theory, Tome 292 (2016), pp. 149-158

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Gamma _{g,b}$ denote the orientation-preserving mapping class group of a closed orientable surface of genus $g$ with $b$ punctures. For a group $G$ let $\Phi _f(G)$ denote the intersection of all maximal subgroups of finite index in $G$. Motivated by a question of Ivanov as to whether $\Phi _f(G)$ is nilpotent when $G$ is a finitely generated subgroup of $\Gamma _{g,b}$, in this paper we compute $\Phi _f(G)$ for certain subgroups of $\Gamma _{g,b}$. In particular, we answer Ivanov's question in the affirmative for these subgroups of $\Gamma _{g,b}$.
@article{TM_2016_292_a8,
     author = {G. Masbaum and A. W. Reid},
     title = {Frattini and related subgroups of mapping class groups},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {149--158},
     publisher = {mathdoc},
     volume = {292},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2016_292_a8/}
}
TY  - JOUR
AU  - G. Masbaum
AU  - A. W. Reid
TI  - Frattini and related subgroups of mapping class groups
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2016
SP  - 149
EP  - 158
VL  - 292
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2016_292_a8/
LA  - en
ID  - TM_2016_292_a8
ER  - 
%0 Journal Article
%A G. Masbaum
%A A. W. Reid
%T Frattini and related subgroups of mapping class groups
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2016
%P 149-158
%V 292
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2016_292_a8/
%G en
%F TM_2016_292_a8
G. Masbaum; A. W. Reid. Frattini and related subgroups of mapping class groups. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebra, geometry, and number theory, Tome 292 (2016), pp. 149-158. http://geodesic.mathdoc.fr/item/TM_2016_292_a8/