Random methods in 3-manifold theory
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebra, geometry, and number theory, Tome 292 (2016), pp. 124-148

Voir la notice de l'article provenant de la source Math-Net.Ru

The surface map arising from a random walk on the mapping class group may be used as the gluing map for a Heegaard splitting, and the resulting 3-manifold is known as a random Heegaard splitting. We show that the splitting distance of random Heegaard splittings grows linearly in the length of the random walk, with an exponential decay estimate for the proportion with slower growth. We use this to obtain the limiting distribution of Casson invariants of random Heegaard splittings.
@article{TM_2016_292_a7,
     author = {Alexander Lubotzky and Joseph Maher and Conan Wu},
     title = {Random methods in 3-manifold theory},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {124--148},
     publisher = {mathdoc},
     volume = {292},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2016_292_a7/}
}
TY  - JOUR
AU  - Alexander Lubotzky
AU  - Joseph Maher
AU  - Conan Wu
TI  - Random methods in 3-manifold theory
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2016
SP  - 124
EP  - 148
VL  - 292
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2016_292_a7/
LA  - en
ID  - TM_2016_292_a7
ER  - 
%0 Journal Article
%A Alexander Lubotzky
%A Joseph Maher
%A Conan Wu
%T Random methods in 3-manifold theory
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2016
%P 124-148
%V 292
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2016_292_a7/
%G en
%F TM_2016_292_a7
Alexander Lubotzky; Joseph Maher; Conan Wu. Random methods in 3-manifold theory. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebra, geometry, and number theory, Tome 292 (2016), pp. 124-148. http://geodesic.mathdoc.fr/item/TM_2016_292_a7/