Coefficient rings of Tate formal groups determining Krichever genera
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebra, geometry, and number theory, Tome 292 (2016), pp. 43-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to problems at the intersection of formal group theory, the theory of Hirzebruch genera, and the theory of elliptic functions. In the focus of our interest are Tate formal groups corresponding to the general five-parametric model of the elliptic curve as well as formal groups corresponding to the general four-parametric Krichever genus. We describe coefficient rings of formal groups whose exponentials are determined by elliptic functions of levels $2$ and $3$.
@article{TM_2016_292_a3,
     author = {E. Yu. Bunkova and V. M. Buchstaber and A. V. Ustinov},
     title = {Coefficient rings of {Tate} formal groups determining {Krichever} genera},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {43--68},
     publisher = {mathdoc},
     volume = {292},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2016_292_a3/}
}
TY  - JOUR
AU  - E. Yu. Bunkova
AU  - V. M. Buchstaber
AU  - A. V. Ustinov
TI  - Coefficient rings of Tate formal groups determining Krichever genera
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2016
SP  - 43
EP  - 68
VL  - 292
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2016_292_a3/
LA  - ru
ID  - TM_2016_292_a3
ER  - 
%0 Journal Article
%A E. Yu. Bunkova
%A V. M. Buchstaber
%A A. V. Ustinov
%T Coefficient rings of Tate formal groups determining Krichever genera
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2016
%P 43-68
%V 292
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2016_292_a3/
%G ru
%F TM_2016_292_a3
E. Yu. Bunkova; V. M. Buchstaber; A. V. Ustinov. Coefficient rings of Tate formal groups determining Krichever genera. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebra, geometry, and number theory, Tome 292 (2016), pp. 43-68. http://geodesic.mathdoc.fr/item/TM_2016_292_a3/

[1] Bukhshtaber V.M., “Funktsionalnye uravneniya, assotsiirovannye s teoremami slozheniya dlya ellipticheskikh funktsii, i dvuznachnye algebraicheskie gruppy”, UMN, 45:3 (1990), 185–186 | MR | Zbl

[2] Bukhshtaber V.M., “Kompleksnye kobordizmy i formalnye gruppy”, UMN, 67:5 (2012), 111–174 | DOI | MR

[3] Bukhshtaber V.M., Bunkova E.Yu., “Formalnye gruppy Krichevera”, Funkts. analiz i ego pril., 45:2 (2011), 23–44 | DOI | MR

[4] Bukhshtaber V.M., Bunkova E.Yu., “Universalnaya formalnaya gruppa, opredelyayuschaya ellipticheskuyu funktsiyu urovnya $3$”, Chebyshev. sb., 16:2 (2015), 66–78 | MR

[5] Bukhshtaber V.M., Mischenko A.S., Novikov S.P., “Formalnye gruppy i ikh rol v apparate algebraicheskoi topologii”, UMN, 26:2 (1971), 131–154 | MR | Zbl

[6] Buchstaber V.M., Panov T.E., Toric topology, Math. Surv. Monogr., 204, Amer. Math. Soc., Providence, RI, 2015 | DOI | MR | Zbl

[7] Bukhshtaber V.M., Ustinov A.V., “Koltsa koeffitsientov formalnykh grupp”, Mat. sb., 206:11 (2015), 19–60 | DOI | MR

[8] Hattori A., “Integral characteristic numbers for weakly almost complex manifolds”, Topology, 5:3 (1966), 259–280 | DOI | MR | Zbl

[9] Hazewinkel M., Formal groups and applications, Acad. Press, New York, 1978 | MR | Zbl

[10] Hirzebruch F., Elliptic genera of level $N$ for complex manifolds, Preprint 88-24, Max-Planck-Inst. Math., Bonn, 1988 | MR

[11] Hirzebruch F., Berger T., Jung R., Manifolds and modular forms, Aspects Math., E20, Friedr. Vieweg, Wiesbaden, 1992 | DOI | MR | Zbl

[12] Khonda T., “Formalnye gruppy i dzeta-funktsii”, Matematika: Sb. per., 13:6 (1969), 3–17 | MR

[13] Krichever I.M., “Obobschennye ellipticheskie rody i funktsii Beikera–Akhiezera”, Mat. zametki, 47:2 (1990), 34–45 | MR

[14] Lazard M., “Sur les groupes de Lie formels à un paramètre”, Bull. Soc. math. France, 83 (1955), 251–274 | MR | Zbl

[15] Novikov S.P., “Metody algebraicheskoi topologii s tochki zreniya teorii kobordizmov”, Izv. AN SSSR. Ser. mat., 31:4 (1967), 855–951 | Zbl

[16] Novikov S.P., “Operatory Adamsa i nepodvizhnye tochki”, Izv. AN SSSR. Ser. mat., 32:6 (1968), 1245–1263 | MR | Zbl

[17] Ochanine S., “Sur les genres multiplicatifs définis par des intégrales elliptiques”, Topology, 26:2 (1987), 143–151 | DOI | MR | Zbl

[18] Von Oehsen J.B., “Elliptic genera of level $N$ and Jacobi polynomials”, Proc. Amer. Math. Soc., 122:1 (1994), 303–312 | MR | Zbl

[19] Quillen D., “On the formal group laws of unoriented and complex cobordism theory”, Bull. Amer. Math. Soc., 75:6 (1969), 1293–1298 | DOI | MR | Zbl

[20] Stong R.E., “Relations among characteristic numbers. I, II”, Topology, 4:3 (1965), 267–281 ; 5:2 (1966), 133–148 | DOI | MR | Zbl | DOI | MR | Zbl

[21] Tate J.T., “The arithmetic of elliptic curves”, Invent. math., 23:3–4 (1974), 179–206 | DOI | MR | Zbl

[22] Witten E., “Elliptic genera and quantum field theory”, Commun. Math. Phys., 109 (1987), 525–536 | DOI | MR | Zbl