Properly discontinuous group actions on affine homogeneous spaces
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebra, geometry, and number theory, Tome 292 (2016), pp. 268-279

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a real algebraic group, $H \leq G$ an algebraic subgroup containing a maximal reductive subgroup of $G$, and $\Gamma $ a subgroup of $G$ acting on $G/H$ by left translations. We conjecture that $\Gamma $ is virtually solvable provided its action on $G/H$ is properly discontinuous and $\Gamma \backslash G/H$ is compact, and we confirm this conjecture when $G$ does not contain simple algebraic subgroups of rank ${\geq }\,2$. If the action of $\Gamma $ on $G/H$ (which is isomorphic to an affine linear space $\mathbb A^n$) is linear, our conjecture coincides with the Auslander conjecture. We prove the Auslander conjecture for $n\leq 5$.
@article{TM_2016_292_a16,
     author = {George Tomanov},
     title = {Properly discontinuous group actions on affine homogeneous spaces},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {268--279},
     publisher = {mathdoc},
     volume = {292},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2016_292_a16/}
}
TY  - JOUR
AU  - George Tomanov
TI  - Properly discontinuous group actions on affine homogeneous spaces
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2016
SP  - 268
EP  - 279
VL  - 292
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2016_292_a16/
LA  - en
ID  - TM_2016_292_a16
ER  - 
%0 Journal Article
%A George Tomanov
%T Properly discontinuous group actions on affine homogeneous spaces
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2016
%P 268-279
%V 292
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2016_292_a16/
%G en
%F TM_2016_292_a16
George Tomanov. Properly discontinuous group actions on affine homogeneous spaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebra, geometry, and number theory, Tome 292 (2016), pp. 268-279. http://geodesic.mathdoc.fr/item/TM_2016_292_a16/