On the congruence kernel for simple algebraic groups
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebra, geometry, and number theory, Tome 292 (2016), pp. 224-254
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper contains several results about the structure of the congruence kernel $C^{(S)}(G)$ of an absolutely almost simple simply connected algebraic group $G$ over a global field $K$ with respect to a set of places $S$ of $K$. In particular, we show that $C^{(S)}(G)$ is always trivial if $S$ contains a generalized arithmetic progression. We also give a criterion for the centrality of $C^{(S)}(G)$ in the general situation in terms of the existence of commuting lifts of the groups $G(K_v)$ for $v\notin S$ in the $S$-arithmetic completion $\widehat {G}^{(S)}$. This result enables one to give simple proofs of the centrality in a number of cases. Finally, we show that if $K$ is a number field and $G$ is $K$-isotropic, then $C^{(S)}(G)$ as a normal subgroup of $\widehat {G}^{(S)}$ is almost generated by a single element.
@article{TM_2016_292_a13,
author = {Gopal Prasad and Andrei S. Rapinchuk},
title = {On the congruence kernel for simple algebraic groups},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {224--254},
publisher = {mathdoc},
volume = {292},
year = {2016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TM_2016_292_a13/}
}
TY - JOUR AU - Gopal Prasad AU - Andrei S. Rapinchuk TI - On the congruence kernel for simple algebraic groups JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2016 SP - 224 EP - 254 VL - 292 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2016_292_a13/ LA - en ID - TM_2016_292_a13 ER -
Gopal Prasad; Andrei S. Rapinchuk. On the congruence kernel for simple algebraic groups. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebra, geometry, and number theory, Tome 292 (2016), pp. 224-254. http://geodesic.mathdoc.fr/item/TM_2016_292_a13/