Approximate solution to a time optimal boundary control problem for the wave equation
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal control, Tome 291 (2015), pp. 112-127

Voir la notice de l'article provenant de la source Math-Net.Ru

Time optimal problems with two-sided boundary controls for the wave equation are considered in classes of strong generalized solutions. Various combinations of boundary conditions of the first, second, and third kinds are admitted in the statement. A noise-immune algorithm is proposed for the approximate calculation of the optimal time and the corresponding boundary controls. The approximate solutions are shown to converge under asymptotic refinement of the parameters of finite-dimensional approximation and a decrease in the error level in the definition of target functions.
@article{TM_2015_291_a9,
     author = {D. A. Ivanov and M. M. Potapov},
     title = {Approximate solution to a time optimal boundary control problem for the wave equation},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {112--127},
     publisher = {mathdoc},
     volume = {291},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2015_291_a9/}
}
TY  - JOUR
AU  - D. A. Ivanov
AU  - M. M. Potapov
TI  - Approximate solution to a time optimal boundary control problem for the wave equation
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2015
SP  - 112
EP  - 127
VL  - 291
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2015_291_a9/
LA  - ru
ID  - TM_2015_291_a9
ER  - 
%0 Journal Article
%A D. A. Ivanov
%A M. M. Potapov
%T Approximate solution to a time optimal boundary control problem for the wave equation
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2015
%P 112-127
%V 291
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2015_291_a9/
%G ru
%F TM_2015_291_a9
D. A. Ivanov; M. M. Potapov. Approximate solution to a time optimal boundary control problem for the wave equation. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal control, Tome 291 (2015), pp. 112-127. http://geodesic.mathdoc.fr/item/TM_2015_291_a9/