On the boundedness of optimal controls in infinite-horizon problems
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal control, Tome 291 (2015), pp. 45-55

Voir la notice de l'article provenant de la source Math-Net.Ru

A class of infinite-horizon optimal control problems that arise in economic applications is considered. A theorem on the nonemptiness and boundedness of the set of optimal controls is proved by the method of finite-horizon approximations and the apparatus of the Pontryagin maximum principle. As an example, a simple model of optimal economic growth with a renewable resource is considered.
@article{TM_2015_291_a3,
     author = {S. M. Aseev},
     title = {On the boundedness of optimal controls in infinite-horizon problems},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {45--55},
     publisher = {mathdoc},
     volume = {291},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2015_291_a3/}
}
TY  - JOUR
AU  - S. M. Aseev
TI  - On the boundedness of optimal controls in infinite-horizon problems
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2015
SP  - 45
EP  - 55
VL  - 291
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2015_291_a3/
LA  - ru
ID  - TM_2015_291_a3
ER  - 
%0 Journal Article
%A S. M. Aseev
%T On the boundedness of optimal controls in infinite-horizon problems
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2015
%P 45-55
%V 291
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2015_291_a3/
%G ru
%F TM_2015_291_a3
S. M. Aseev. On the boundedness of optimal controls in infinite-horizon problems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal control, Tome 291 (2015), pp. 45-55. http://geodesic.mathdoc.fr/item/TM_2015_291_a3/