Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2015_291_a2, author = {A. V. Arutyunov}, title = {Caristi's condition and existence of a minimum of a lower bounded function in a metric space. {Applications} to the theory of coincidence points}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {30--44}, publisher = {mathdoc}, volume = {291}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2015_291_a2/} }
TY - JOUR AU - A. V. Arutyunov TI - Caristi's condition and existence of a minimum of a lower bounded function in a metric space. Applications to the theory of coincidence points JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2015 SP - 30 EP - 44 VL - 291 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2015_291_a2/ LA - ru ID - TM_2015_291_a2 ER -
%0 Journal Article %A A. V. Arutyunov %T Caristi's condition and existence of a minimum of a lower bounded function in a metric space. Applications to the theory of coincidence points %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2015 %P 30-44 %V 291 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2015_291_a2/ %G ru %F TM_2015_291_a2
A. V. Arutyunov. Caristi's condition and existence of a minimum of a lower bounded function in a metric space. Applications to the theory of coincidence points. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal control, Tome 291 (2015), pp. 30-44. http://geodesic.mathdoc.fr/item/TM_2015_291_a2/