Caristi's condition and existence of a minimum of a lower bounded function in a metric space. Applications to the theory of coincidence points
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal control, Tome 291 (2015), pp. 30-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a lower bounded function on a complete metric space. For this function, we obtain conditions, including Caristi's conditions, under which this function attains its infimum. These results are applied to the study of the existence of a coincidence point of two mappings acting from one metric space to another. We consider both single-valued and set-valued mappings one of which is a covering mapping and the other is Lipschitz continuous. Special attention is paid to the study of a degenerate case that includes, in particular, generalized contraction mappings.
@article{TM_2015_291_a2,
     author = {A. V. Arutyunov},
     title = {Caristi's condition and existence of a minimum of a lower bounded function in a metric space. {Applications} to the theory of coincidence points},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {30--44},
     publisher = {mathdoc},
     volume = {291},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2015_291_a2/}
}
TY  - JOUR
AU  - A. V. Arutyunov
TI  - Caristi's condition and existence of a minimum of a lower bounded function in a metric space. Applications to the theory of coincidence points
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2015
SP  - 30
EP  - 44
VL  - 291
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2015_291_a2/
LA  - ru
ID  - TM_2015_291_a2
ER  - 
%0 Journal Article
%A A. V. Arutyunov
%T Caristi's condition and existence of a minimum of a lower bounded function in a metric space. Applications to the theory of coincidence points
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2015
%P 30-44
%V 291
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2015_291_a2/
%G ru
%F TM_2015_291_a2
A. V. Arutyunov. Caristi's condition and existence of a minimum of a lower bounded function in a metric space. Applications to the theory of coincidence points. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal control, Tome 291 (2015), pp. 30-44. http://geodesic.mathdoc.fr/item/TM_2015_291_a2/

[1] Arutyunov A.V., Gelman B.D., “Minimum funktsionala v metricheskom prostranstve i nepodvizhnye tochki”, ZhVMiMF, 49:7 (2009), 1167–1174 | MR | Zbl

[2] Caristi J., “Fixed point theorems for mappings satisfying inwardness conditions”, Trans. Amer. Math. Soc., 215 (1976), 241–251 | DOI | MR | Zbl

[3] Oben Zh.-P., Ekland I., Prikladnoi nelineinyi analiz, Mir, M., 1988 | MR

[4] Fomenko T.N., “Cascade search principle and its applications to the coincidence problems of $n$ one-valued or multi-valued mappings”, Topology Appl., 157:4 (2010), 760–773 | DOI | MR | Zbl

[5] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988 | MR

[6] Khamsi M.A., “Remarks on Caristi's fixed point theorem”, Nonlinear Anal., Theory Methods Appl., 71:1–2 (2009), 227–231 | DOI | MR | Zbl

[7] Arutyunov A.V., Lektsii po vypuklomu i mnogoznachnomu analizu, Fizmatlit, M., 2014

[8] Arutyunov A.V., “Nakryvayuschie otobrazheniya v metricheskikh prostranstvakh i nepodvizhnye tochki”, DAN, 416:2 (2007), 151–155 | MR | Zbl

[9] Arutyunov A., Avakov E., Gel'man B., Dmitruk A., Obukhovskii V., “Locally covering maps in metric spaces and coincidence points”, J. Fixed Point Theory Appl., 5:1 (2009), 105–127 | DOI | MR | Zbl

[10] Zhukovskiy S.E., “Comparison of some types of locally covering mappings”, Fixed Point Theory (to appear) , 2015 pp.

[11] Vasilev F.P., Metody optimizatsii, Ch. 1, MTsNMO, M., 2011

[12] Browder F.E., “On the convergence of successive approximations for nonlinear functional equations”, Nederl. Akad. Wet. Proc. A, 71 (1968), 27–35 | MR | Zbl

[13] Krasnoselskii M.A., Vainikko G.M., Zabreiko P.P., Rutitskii Ya.B., Stetsenko V.Ya., Priblizhennoe reshenie operatornykh uravnenii, Nauka, M., 1969 | MR

[14] Jachymski J., “Around Browder's fixed point theorem for contractions”, J. Fixed Point Theory Appl., 5:1 (2009), 47–61 | DOI | MR | Zbl

[15] Arutyunov A.V., Zhukovskii S.E., “Vozmuschenie reshenii zadachi o tochkakh sovpadeniya dvukh otobrazhenii”, DAN, 456:5 (2014), 514–517 | MR | Zbl

[16] Borisovich Yu.G., Gelman B.D., Myshkis A.D., Obukhovskii V.V., Vvedenie v teoriyu mnogoznachnykh otobrazhenii i differentsialnykh vklyuchenii, 2-e izd., Librokom, M., 2011 | MR

[17] Polovinkin E.S., Mnogoznachnyi analiz i differentsialnye vklyucheniya, Fizmatlit, M., 2014