Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2015_291_a16, author = {V. I. Maksimov}, title = {Calculation of the derivative of an inaccurately defined function by means of feedback laws}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {231--243}, publisher = {mathdoc}, volume = {291}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2015_291_a16/} }
TY - JOUR AU - V. I. Maksimov TI - Calculation of the derivative of an inaccurately defined function by means of feedback laws JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2015 SP - 231 EP - 243 VL - 291 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2015_291_a16/ LA - ru ID - TM_2015_291_a16 ER -
%0 Journal Article %A V. I. Maksimov %T Calculation of the derivative of an inaccurately defined function by means of feedback laws %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2015 %P 231-243 %V 291 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2015_291_a16/ %G ru %F TM_2015_291_a16
V. I. Maksimov. Calculation of the derivative of an inaccurately defined function by means of feedback laws. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal control, Tome 291 (2015), pp. 231-243. http://geodesic.mathdoc.fr/item/TM_2015_291_a16/
[1] Stechkin S.B., “Nailuchshee priblizhenie lineinykh operatorov”, Mat. zametki, 1:2 (1967), 137–148 | Zbl
[2] Vasin V.V., “Ob ustoichivom vychislenii proizvodnoi v prostranstve $C(-\infty ,\infty )$”, ZhVMiMF, 13:6 (1973), 1383–1389 | MR
[3] Stechkin S.B., Subbotin Yu.N., Splainy v vychislitelnoi matematike, Nauka, M., 1976 | MR
[4] Ivanov V.K., Vasin V.V., Tanana V.P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978 | MR
[5] Arestov V.V., “O ravnomernoi regulyarizatsii zadachi vychisleniya znachenii operatora”, Mat. zametki, 22:2 (1977), 231–244 | MR | Zbl
[6] Tikhonov A.N., Arsenin V.Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1974 | MR
[7] Osipov Yu.S., Kryazhimskii A.V., Inverse problems for ordinary differential equations: Dynamical solutions, Gordon and Breach, Amsterdam, 1995 | MR | Zbl
[8] Osipov Yu.S., Kryazhimskii A.V., Maksimov V.I., Metody dinamicheskogo vosstanovleniya vkhodov upravlyaemykh sistem, UrO RAN, Ekaterinburg, 2011
[9] Blizorukova M.S., Maksimov V.I., Pandolfi L., “Dinamicheskaya rekonstruktsiya vkhoda v nelineinoi sisteme s zapazdyvaniem”, Avtomatika i telemekhanika, 2002, no. 2, 3–13 | MR | Zbl
[10] Maksimov V.I., “Metod upravlyaemykh modelei v zadache rekonstruktsii granichnogo vkhoda”, Tr. MIAN, 262 (2008), 178–186 | MR | Zbl
[11] Kryazhimskiy A.V., Maksimov V.I., “On rough inversion of a dynamical system with a disturbance”, J. Inverse Ill-Posed Probl., 16:6 (2008), 587–600 | DOI | MR | Zbl
[12] Maksimov V.I., Fedina N.A., “Metod upravlyaemykh modelei v zadache rekonstruktsii nelineinoi sistemy s zapazdyvaniem”, Dif. uravneniya, 43:1 (2007), 36–40 | MR | Zbl
[13] Lavrentev M.M., Maksimov V.I., “O vosstanovlenii pravoi chasti parabolicheskogo uravneniya”, ZhVMiMF, 48:4 (2008), 674–680 | MR | Zbl
[14] Kryazhimskii A.V., Osipov Yu.S., “O nailuchshem priblizhenii operatora differentsirovaniya v klasse neuprezhdayuschikh operatorov”, Mat. zametki, 37:2 (1985), 192–199 | MR
[15] Maksimov V.I., Pandolfi L., “O rekonstruktsii neogranichennykh upravlenii v nelineinykh dinamicheskikh sistemakh”, PMM, 65:3 (2001), 385–391 | MR | Zbl
[16] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974 | MR