Decomposable branching processes with a fixed extinction moment
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 114-135

Voir la notice de l'article provenant de la source Math-Net.Ru

The asymptotic behavior as $n\to \infty $ of the probability of the event that a decomposable critical branching process $\mathbf Z(m)= (Z_1(m),\dots ,Z_N(m))$, $m=0,1,2,\dots $, with $N$ types of particles dies at moment $n$ is investigated, and conditional limit theorems are proved that describe the distribution of the number of particles in the process $\mathbf Z(\cdot )$ at moment $m$ given that the extinction moment of the process is $n$. These limit theorems can be considered as statements describing the distribution of the number of vertices in the layers of certain classes of simply generated random trees of fixed height.
@article{TM_2015_290_a9,
     author = {V. A. Vatutin and E. E. D'yakonova},
     title = {Decomposable branching processes with a fixed extinction moment},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {114--135},
     publisher = {mathdoc},
     volume = {290},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2015_290_a9/}
}
TY  - JOUR
AU  - V. A. Vatutin
AU  - E. E. D'yakonova
TI  - Decomposable branching processes with a fixed extinction moment
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2015
SP  - 114
EP  - 135
VL  - 290
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2015_290_a9/
LA  - ru
ID  - TM_2015_290_a9
ER  - 
%0 Journal Article
%A V. A. Vatutin
%A E. E. D'yakonova
%T Decomposable branching processes with a fixed extinction moment
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2015
%P 114-135
%V 290
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2015_290_a9/
%G ru
%F TM_2015_290_a9
V. A. Vatutin; E. E. D'yakonova. Decomposable branching processes with a fixed extinction moment. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 114-135. http://geodesic.mathdoc.fr/item/TM_2015_290_a9/