Cartier isomorphism for unital associative algebras
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 43-60

Voir la notice de l'article provenant de la source Math-Net.Ru

Given an associative unital algebra $A$ over a perfect field $k$ of odd positive characteristic, we construct a noncommutative generalization of the Cartier isomorphism for $A$. The role of differential forms is played by Hochschild homology classes, and the de Rham differential is replaced with the Connes–Tsygan differential.
@article{TM_2015_290_a3,
     author = {D. Kaledin},
     title = {Cartier isomorphism for unital associative algebras},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {43--60},
     publisher = {mathdoc},
     volume = {290},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2015_290_a3/}
}
TY  - JOUR
AU  - D. Kaledin
TI  - Cartier isomorphism for unital associative algebras
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2015
SP  - 43
EP  - 60
VL  - 290
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2015_290_a3/
LA  - ru
ID  - TM_2015_290_a3
ER  - 
%0 Journal Article
%A D. Kaledin
%T Cartier isomorphism for unital associative algebras
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2015
%P 43-60
%V 290
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2015_290_a3/
%G ru
%F TM_2015_290_a3
D. Kaledin. Cartier isomorphism for unital associative algebras. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 43-60. http://geodesic.mathdoc.fr/item/TM_2015_290_a3/