Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2015_290_a26, author = {Yu. V. Malykhin and S. A. Telyakovskii and N. N. Kholshchevnikova}, title = {Integrability of the sum of absolute values of blocks of the {Fourier--Walsh} series for functions of bounded variation}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {323--334}, publisher = {mathdoc}, volume = {290}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2015_290_a26/} }
TY - JOUR AU - Yu. V. Malykhin AU - S. A. Telyakovskii AU - N. N. Kholshchevnikova TI - Integrability of the sum of absolute values of blocks of the Fourier--Walsh series for functions of bounded variation JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2015 SP - 323 EP - 334 VL - 290 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2015_290_a26/ LA - ru ID - TM_2015_290_a26 ER -
%0 Journal Article %A Yu. V. Malykhin %A S. A. Telyakovskii %A N. N. Kholshchevnikova %T Integrability of the sum of absolute values of blocks of the Fourier--Walsh series for functions of bounded variation %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2015 %P 323-334 %V 290 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2015_290_a26/ %G ru %F TM_2015_290_a26
Yu. V. Malykhin; S. A. Telyakovskii; N. N. Kholshchevnikova. Integrability of the sum of absolute values of blocks of the Fourier--Walsh series for functions of bounded variation. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 323-334. http://geodesic.mathdoc.fr/item/TM_2015_290_a26/
[1] Telyakovskii S.A., “O chastnykh summakh ryadov Fure funktsii ogranichennoi variatsii”, Tr. MIAN, 219 (1997), 378–386 | MR
[2] Belov A.S., Telyakovskii S.A., “Usilenie teorem Dirikhle–Zhordana i Yanga o ryadakh Fure funktsii ogranichennoi variatsii”, Mat. sb., 198:6 (2007), 25–40 | DOI | MR | Zbl
[3] Telyakovskii S.A., “Some properties of Fourier series of functions with bounded variation”, East J. Approx., 10:1–2 (2004), 215–218 | MR | Zbl
[4] Trigub R.M., “A note on the paper of Telyakovski “Certain properties of Fourier series of functions with bounded variation””, East J. Approx., 13:1 (2007), 1–6 | MR
[5] Golubov B.I., Efimov A.V., Skvortsov V.A., Ryady i preobrazovaniya Uolsha: Teoriya i primeneniya, Nauka, M., 1987 | MR
[6] Schipp F., Wade W.R., Simon P., Walsh series: An introduction to dyadic harmonic analysis, Akad. Kiadó, Budapest, 1990 | MR
[7] Balashov L.A., Rubinshtein A.I., “Ryady po sisteme Uolsha i ikh obobscheniya”, Matematicheskii analiz 1970, Itogi nauki. Ser. matematika, VINITI, M., 1971, 147–202
[8] Fine N.J., “On the Walsh functions”, Trans. Amer. Math. Soc., 65:3 (1949), 372–414 | DOI | MR | Zbl
[9] Shneider A.A., “O skhodimosti ryadov Fure po funktsiyam Uolsha”, Mat. sb., 34:3 (1954), 441–472
[10] Lukomskii S.F., “Convergence of multiple Walsh series in measure and in $L$”, East J. Approx., 3:3 (1997), 101–116 | MR
[11] Kashin B.S., Saakyan A.A., Ortogonalnye ryady, 2-e izd., Izd-vo AFTs, M., 1999 | MR