Integrability of the sum of absolute values of blocks of the Fourier--Walsh series for functions of bounded variation
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 323-334.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish necessary and sufficient conditions on a sequence that splits the Fourier–Walsh series into blocks under which the series consisting of the absolute values of such blocks of the Fourier–Walsh series of any function of bounded variation converges to an integrable function. We also obtain estimates for the $L$-norms of the Walsh–Dirichlet kernels and their differences.
@article{TM_2015_290_a26,
     author = {Yu. V. Malykhin and S. A. Telyakovskii and N. N. Kholshchevnikova},
     title = {Integrability of the sum of absolute values of blocks of the {Fourier--Walsh} series for functions of bounded variation},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {323--334},
     publisher = {mathdoc},
     volume = {290},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2015_290_a26/}
}
TY  - JOUR
AU  - Yu. V. Malykhin
AU  - S. A. Telyakovskii
AU  - N. N. Kholshchevnikova
TI  - Integrability of the sum of absolute values of blocks of the Fourier--Walsh series for functions of bounded variation
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2015
SP  - 323
EP  - 334
VL  - 290
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2015_290_a26/
LA  - ru
ID  - TM_2015_290_a26
ER  - 
%0 Journal Article
%A Yu. V. Malykhin
%A S. A. Telyakovskii
%A N. N. Kholshchevnikova
%T Integrability of the sum of absolute values of blocks of the Fourier--Walsh series for functions of bounded variation
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2015
%P 323-334
%V 290
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2015_290_a26/
%G ru
%F TM_2015_290_a26
Yu. V. Malykhin; S. A. Telyakovskii; N. N. Kholshchevnikova. Integrability of the sum of absolute values of blocks of the Fourier--Walsh series for functions of bounded variation. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 323-334. http://geodesic.mathdoc.fr/item/TM_2015_290_a26/

[1] Telyakovskii S.A., “O chastnykh summakh ryadov Fure funktsii ogranichennoi variatsii”, Tr. MIAN, 219 (1997), 378–386 | MR

[2] Belov A.S., Telyakovskii S.A., “Usilenie teorem Dirikhle–Zhordana i Yanga o ryadakh Fure funktsii ogranichennoi variatsii”, Mat. sb., 198:6 (2007), 25–40 | DOI | MR | Zbl

[3] Telyakovskii S.A., “Some properties of Fourier series of functions with bounded variation”, East J. Approx., 10:1–2 (2004), 215–218 | MR | Zbl

[4] Trigub R.M., “A note on the paper of Telyakovski “Certain properties of Fourier series of functions with bounded variation””, East J. Approx., 13:1 (2007), 1–6 | MR

[5] Golubov B.I., Efimov A.V., Skvortsov V.A., Ryady i preobrazovaniya Uolsha: Teoriya i primeneniya, Nauka, M., 1987 | MR

[6] Schipp F., Wade W.R., Simon P., Walsh series: An introduction to dyadic harmonic analysis, Akad. Kiadó, Budapest, 1990 | MR

[7] Balashov L.A., Rubinshtein A.I., “Ryady po sisteme Uolsha i ikh obobscheniya”, Matematicheskii analiz 1970, Itogi nauki. Ser. matematika, VINITI, M., 1971, 147–202

[8] Fine N.J., “On the Walsh functions”, Trans. Amer. Math. Soc., 65:3 (1949), 372–414 | DOI | MR | Zbl

[9] Shneider A.A., “O skhodimosti ryadov Fure po funktsiyam Uolsha”, Mat. sb., 34:3 (1954), 441–472

[10] Lukomskii S.F., “Convergence of multiple Walsh series in measure and in $L$”, East J. Approx., 3:3 (1997), 101–116 | MR

[11] Kashin B.S., Saakyan A.A., Ortogonalnye ryady, 2-e izd., Izd-vo AFTs, M., 1999 | MR