On sum sets of sets having small product set
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 304-316

Voir la notice de l'article provenant de la source Math-Net.Ru

We improve the sum–product result of Solymosi in $\mathbb R$; namely, we prove that $\max \{|A+A|,|AA|\}\gg |A|^{4/3+c}$, where $c>0$ is an absolute constant. New lower bounds for sums of sets with small product set are found. Previous results are improved effectively for sets $A\subset \mathbb R$ with $|AA| \le |A|^{4/3}$.
@article{TM_2015_290_a24,
     author = {S. V. Konyagin and I. D. Shkredov},
     title = {On sum sets of sets having small product set},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {304--316},
     publisher = {mathdoc},
     volume = {290},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2015_290_a24/}
}
TY  - JOUR
AU  - S. V. Konyagin
AU  - I. D. Shkredov
TI  - On sum sets of sets having small product set
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2015
SP  - 304
EP  - 316
VL  - 290
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2015_290_a24/
LA  - ru
ID  - TM_2015_290_a24
ER  - 
%0 Journal Article
%A S. V. Konyagin
%A I. D. Shkredov
%T On sum sets of sets having small product set
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2015
%P 304-316
%V 290
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2015_290_a24/
%G ru
%F TM_2015_290_a24
S. V. Konyagin; I. D. Shkredov. On sum sets of sets having small product set. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 304-316. http://geodesic.mathdoc.fr/item/TM_2015_290_a24/