Additive and multiplicative anisotropic estimates for integral norms of differentiable functions on irregular domains
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 293-303

Voir la notice de l'article provenant de la source Math-Net.Ru

For irregular domains $G\subset \mathbb R^n$ satisfying the flexible $\sigma $-cone condition, we establish embedding theorems and Gagliardo–Nirenberg type multiplicative inequalities that are anisotropic with respect to the order of derivatives and integrability exponents.
@article{TM_2015_290_a23,
     author = {A. Yu. Golovko},
     title = {Additive and multiplicative anisotropic estimates for integral norms of differentiable functions on irregular domains},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {293--303},
     publisher = {mathdoc},
     volume = {290},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2015_290_a23/}
}
TY  - JOUR
AU  - A. Yu. Golovko
TI  - Additive and multiplicative anisotropic estimates for integral norms of differentiable functions on irregular domains
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2015
SP  - 293
EP  - 303
VL  - 290
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2015_290_a23/
LA  - ru
ID  - TM_2015_290_a23
ER  - 
%0 Journal Article
%A A. Yu. Golovko
%T Additive and multiplicative anisotropic estimates for integral norms of differentiable functions on irregular domains
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2015
%P 293-303
%V 290
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2015_290_a23/
%G ru
%F TM_2015_290_a23
A. Yu. Golovko. Additive and multiplicative anisotropic estimates for integral norms of differentiable functions on irregular domains. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 293-303. http://geodesic.mathdoc.fr/item/TM_2015_290_a23/