On the set of joint representatives of two congruence classes
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 202-210.

Voir la notice de l'article provenant de la source Math-Net.Ru

We estimate how many numbers in a given interval have the property that their residues modulo two different fixed numbers belong to two given sets. The estimates obtained are order sharp.
@article{TM_2015_290_a16,
     author = {Yu. N. Shteinikov},
     title = {On the set of joint representatives of two congruence classes},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {202--210},
     publisher = {mathdoc},
     volume = {290},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2015_290_a16/}
}
TY  - JOUR
AU  - Yu. N. Shteinikov
TI  - On the set of joint representatives of two congruence classes
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2015
SP  - 202
EP  - 210
VL  - 290
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2015_290_a16/
LA  - ru
ID  - TM_2015_290_a16
ER  - 
%0 Journal Article
%A Yu. N. Shteinikov
%T On the set of joint representatives of two congruence classes
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2015
%P 202-210
%V 290
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2015_290_a16/
%G ru
%F TM_2015_290_a16
Yu. N. Shteinikov. On the set of joint representatives of two congruence classes. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 202-210. http://geodesic.mathdoc.fr/item/TM_2015_290_a16/

[1] Bourgain J., Ford K., Konyagin S.V., Shparlinski I.E., “On the divisibility of Fermat quotients”, Mich. Math. J., 59:2 (2010), 313–328 | DOI | MR | Zbl

[2] Gorbachev D.V., “Nekotorye neravenstva dlya diskretnykh polozhitelno opredelennykh funktsii”, Izv. Tulsk. gos. un-ta. Estestv. nauki, 2015, no. 2, 5–12