Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2015_290_a15, author = {O. K. Sheinman}, title = {Semisimple {Lie} algebras and {Hamiltonian} theory of finite-dimensional {Lax} equations with spectral parameter on a {Riemann} surface}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {191--201}, publisher = {mathdoc}, volume = {290}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2015_290_a15/} }
TY - JOUR AU - O. K. Sheinman TI - Semisimple Lie algebras and Hamiltonian theory of finite-dimensional Lax equations with spectral parameter on a Riemann surface JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2015 SP - 191 EP - 201 VL - 290 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2015_290_a15/ LA - ru ID - TM_2015_290_a15 ER -
%0 Journal Article %A O. K. Sheinman %T Semisimple Lie algebras and Hamiltonian theory of finite-dimensional Lax equations with spectral parameter on a Riemann surface %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2015 %P 191-201 %V 290 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2015_290_a15/ %G ru %F TM_2015_290_a15
O. K. Sheinman. Semisimple Lie algebras and Hamiltonian theory of finite-dimensional Lax equations with spectral parameter on a Riemann surface. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 191-201. http://geodesic.mathdoc.fr/item/TM_2015_290_a15/