Transverse fundamental group and projected embeddings
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 166-177

Voir la notice de l'article provenant de la source Math-Net.Ru

For a generic degree $d$ smooth map $f:N^n\to M^n$ we introduce its “transverse fundamental group” $\pi (f)$, which reduces to $\pi _1(M)$ in the case where $f$ is a covering, and in general admits a monodromy homomorphism $\pi (f)\to S_{|d|}$; nevertheless, we show that $\pi (f)$ can be nontrivial even for rather simple degree $1$ maps $S^n\to S^n$. We apply $\pi (f)$ to the problem of lifting $f$ to an embedding $N\hookrightarrow M\times \mathbb R^2$: for such a lift to exist, the monodromy $\pi (f)\to S_{|d|}$ must factor through the group of concordance classes of $|d|$-component string links. At least if $|d|7$, this requires $\pi (f)$ to be torsion-free.
@article{TM_2015_290_a13,
     author = {S. A. Melikhov},
     title = {Transverse fundamental group and projected embeddings},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {166--177},
     publisher = {mathdoc},
     volume = {290},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2015_290_a13/}
}
TY  - JOUR
AU  - S. A. Melikhov
TI  - Transverse fundamental group and projected embeddings
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2015
SP  - 166
EP  - 177
VL  - 290
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2015_290_a13/
LA  - ru
ID  - TM_2015_290_a13
ER  - 
%0 Journal Article
%A S. A. Melikhov
%T Transverse fundamental group and projected embeddings
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2015
%P 166-177
%V 290
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2015_290_a13/
%G ru
%F TM_2015_290_a13
S. A. Melikhov. Transverse fundamental group and projected embeddings. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 166-177. http://geodesic.mathdoc.fr/item/TM_2015_290_a13/