Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2015_290_a10, author = {V. M. Buchstaber and E. Yu. Bunkova}, title = {Manifolds of solutions for {Hirzebruch} functional equations}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {136--148}, publisher = {mathdoc}, volume = {290}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2015_290_a10/} }
TY - JOUR AU - V. M. Buchstaber AU - E. Yu. Bunkova TI - Manifolds of solutions for Hirzebruch functional equations JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2015 SP - 136 EP - 148 VL - 290 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2015_290_a10/ LA - ru ID - TM_2015_290_a10 ER -
V. M. Buchstaber; E. Yu. Bunkova. Manifolds of solutions for Hirzebruch functional equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 136-148. http://geodesic.mathdoc.fr/item/TM_2015_290_a10/
[1] Hirzebruch F., Berger T., Jung R., Manifolds and modular forms, Vieweg, Braunschweig, 1992 | MR | Zbl
[2] Bukhshtaber V.M., Netai E.Yu., “$\mathbb CP(2)$-multiplikativnye rody Khirtsebrukha i ellipticheskie kogomologii”, UMN, 69:4 (2014), 181–182 | DOI | MR
[3] Buchstaber V.M., Panov T.E., Toric topology, Math. Surv. Monogr., 204, Amer. Math. Soc., Providence, RI, 2015 | MR | Zbl
[4] Krichever I.M., “Obobschennye ellipticheskie rody i funktsii Beikera–Akhiezera”, Mat. zametki, 47:2 (1990), 34–45 | MR
[5] Ochanine S., “Sur les genres multiplicatifs définis par des intégrales elliptiques”, Topology, 26:2 (1987), 143–151 | DOI | MR | Zbl
[6] Tate J.T., “The arithmetic of elliptic curves”, Invent. math., 23 (1974), 179–206 | DOI | MR | Zbl
[7] Bukhshtaber V.M., Bunkova E.Yu., “Formalnye gruppy Krichevera”, Funkts. analiz i ego pril., 45:2 (2011), 23–44 | DOI | MR
[8] Gorodentsev A.L., Algebra: Uchebnik dlya studentov-matematikov, Ch. 1, MTsNMO, M., 2013
[9] Makdonald I., Simmetricheskie funktsii i mnogochleny Kholla, Mir, M., 1985 | MR
[10] Fulton W., Young tableaux: With applications to representation theory and geometry, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl
[11] Buchstaber V.M., Terzić S., “Equivariant complex structures on homogeneous spaces and their cobordism classes”, Geometry, topology, and mathematical physics, S.P. Novikov's seminar, 2006–2007, Amer. Math. Soc., Providence, RI, 2008, 27–57, arXiv: 0801.3108 [math.AT] | MR | Zbl
[12] Khirtsebrukh F., Topologicheskie metody v algebraicheskoi geometrii, Mir, M., 1973
[13] Novikov S.P., “Operatory Adamsa i nepodvizhnye tochki”, Izv. AN SSSR. Ser. mat., 32:6 (1968), 1245–1263 | MR | Zbl
[14] Bukhshtaber V.M., “Funktsionalnye uravneniya, assotsiirovannye s teoremami slozheniya dlya ellipticheskikh funktsii, i dvuznachnye algebraicheskie gruppy”, UMN, 45:3 (1990), 185–186 | MR | Zbl