Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2015_289_a9, author = {A. G. Kulikovskii and A. P. Chugainova}, title = {Shock waves in elastoplastic media with the structure defined by the stress relaxation process}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {178--194}, publisher = {mathdoc}, volume = {289}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2015_289_a9/} }
TY - JOUR AU - A. G. Kulikovskii AU - A. P. Chugainova TI - Shock waves in elastoplastic media with the structure defined by the stress relaxation process JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2015 SP - 178 EP - 194 VL - 289 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2015_289_a9/ LA - ru ID - TM_2015_289_a9 ER -
%0 Journal Article %A A. G. Kulikovskii %A A. P. Chugainova %T Shock waves in elastoplastic media with the structure defined by the stress relaxation process %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2015 %P 178-194 %V 289 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2015_289_a9/ %G ru %F TM_2015_289_a9
A. G. Kulikovskii; A. P. Chugainova. Shock waves in elastoplastic media with the structure defined by the stress relaxation process. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected issues of mathematics and mechanics, Tome 289 (2015), pp. 178-194. http://geodesic.mathdoc.fr/item/TM_2015_289_a9/
[1] Sadovskii V. M., Razryvnye resheniya v zadachakh dinamiki uprugoplasticheskikh sred, Nauka, M., 1997 | MR
[2] Novatskii V. K., Volnovye zadachi teorii plastichnosti, Mir, M., 1978
[3] Godunov S. K., Romenskii E. I., Elementy mekhaniki sploshnykh sred i zakony sokhraneniya, Ucheb. posobie dlya fiz. i mat. spets. vuzov, Univ. ser., 4, Nauch. kn., Novosibirsk, 1998
[4] Sadovskii V. M., “Uprugoplasticheskie volny silnogo razryva v lineino uprochnyayuschikhsya sredakh”, Izv. RAN. Mekhanika tverdogo tela, 1997, no. 6, 104–111
[5] Sadovskii V. M., “K teorii udarnykh voln v szhimaemykh plasticheskikh sredakh”, Izv. RAN. Mekhanika tverdogo tela, 2001, no. 5, 87–95
[6] Bykovtsev G. I., Kretova L. D., “O rasprostranenii udarnykh voln v uprugoplasticheskikh sredakh”, PMM, 36:1 (1972), 106–116 | Zbl
[7] Druyanov B. A., “Obobschennye resheniya v teorii plastichnosti”, PMM, 50:3 (1986), 483–489 | MR | Zbl
[8] Kukudzhanov V. N., “Nelineinye volny v uprugoplasticheskikh sredakh”, Volnovaya dinamika mashin, eds. K. V. Frolov, G. K. Sorokin, Nauka, M., 1991, 126–140
[9] Kamenyarzh Ya. A., “O nekotorykh svoistvakh uravnenii modeli svyazannoi termoplastichnosti”, PMM, 36:6 (1972), 1100–1107
[10] Druyanov B. A., Svyatova E. A., “Zadacha o strukture razryva v uprochnyayuscheisya plasticheskoi srede”, PMM, 51:6 (1987), 1047–1049 | Zbl
[11] Sadovskii V. M., “K issledovaniyu struktury poperechnykh udarnykh voln konechnoi amplitudy v plasticheskoi srede”, Izv. RAN. Mekhanika tverdogo tela, 2003, no. 6, 40–49
[12] Kulikovskii A. G., Chugainova A. P., “Ob oprokidyvanii voln Rimana v uprugoplasticheskikh sredakh s uprochneniem”, PMM, 77:4 (2013), 486–500 | MR
[13] Balashov D. B., “O prostykh volnakh uravnenii Prandtlya–Reissa”, PMM, 56:1 (1992), 124–133 | MR | Zbl
[14] Mandel Zh., “Plasticheskie volny v neogranichennoi trekhmernoi srede”, Mekhanika: Period. cb. perev. inostr. statei, 5, Mir, M., 1963, 119–141
[15] Lax P. D., “Hyperbolic systems of conservation laws. II”, Commun. Pure Appl. Math., 10 (1957), 537–566 | DOI | MR | Zbl
[16] Kulikovskii A. G., “O poverkhnostyakh razryva, razdelyayuschikh idealnye sredy s razlichnymi svoistvami. Volny rekombinatsii v magnitnoi gidrodinamike”, PMM, 32:6 (1968), 1125–1131
[17] Kulikovskii A. G., Pogorelov N. V., Semenov A. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, 2-e izd., Fizmatlit, M., 2012
[18] Kulikovskii A. G., Chugainova A. P., “Klassicheskie i neklassicheskie razryvy v resheniyakh uravnenii nelineinoi teorii uprugosti”, UMN, 63:2 (2008), 85–152 | DOI | MR | Zbl