Embedding of a weighted Sobolev space and properties of the domain
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected issues of mathematics and mechanics, Tome 289 (2015), pp. 107-114

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish the embedding $W_{p,v}^s(G)\subset L_{q,w}(G)$ for a weighted Sobolev space defined on an irregular domain $G$ in the case of the limiting exponent when the parameters satisfy certain relations that depend on the geometric properties of the domain $G$.
@article{TM_2015_289_a5,
     author = {O. V. Besov},
     title = {Embedding of a weighted {Sobolev} space and properties of the domain},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {107--114},
     publisher = {mathdoc},
     volume = {289},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2015_289_a5/}
}
TY  - JOUR
AU  - O. V. Besov
TI  - Embedding of a weighted Sobolev space and properties of the domain
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2015
SP  - 107
EP  - 114
VL  - 289
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2015_289_a5/
LA  - ru
ID  - TM_2015_289_a5
ER  - 
%0 Journal Article
%A O. V. Besov
%T Embedding of a weighted Sobolev space and properties of the domain
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2015
%P 107-114
%V 289
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2015_289_a5/
%G ru
%F TM_2015_289_a5
O. V. Besov. Embedding of a weighted Sobolev space and properties of the domain. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected issues of mathematics and mechanics, Tome 289 (2015), pp. 107-114. http://geodesic.mathdoc.fr/item/TM_2015_289_a5/