On sums of Szemerédi–Trotter sets
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected issues of mathematics and mechanics, Tome 289 (2015), pp. 318-327 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We prove new general results on sumsets and difference sets for sets of the Szemerédi–Trotter type. This family includes convex sets, sets with small multiplicative doubling, images of sets under convex/concave maps and others.
@article{TM_2015_289_a17,
     author = {I. D. Shkredov},
     title = {On sums of {Szemer\'edi{\textendash}Trotter} sets},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {318--327},
     year = {2015},
     volume = {289},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2015_289_a17/}
}
TY  - JOUR
AU  - I. D. Shkredov
TI  - On sums of Szemerédi–Trotter sets
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2015
SP  - 318
EP  - 327
VL  - 289
UR  - http://geodesic.mathdoc.fr/item/TM_2015_289_a17/
LA  - ru
ID  - TM_2015_289_a17
ER  - 
%0 Journal Article
%A I. D. Shkredov
%T On sums of Szemerédi–Trotter sets
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2015
%P 318-327
%V 289
%U http://geodesic.mathdoc.fr/item/TM_2015_289_a17/
%G ru
%F TM_2015_289_a17
I. D. Shkredov. On sums of Szemerédi–Trotter sets. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected issues of mathematics and mechanics, Tome 289 (2015), pp. 318-327. http://geodesic.mathdoc.fr/item/TM_2015_289_a17/

[1] Elekes G., Nathanson M. B., Ruzsa I. Z., “Convexity and sumsets”, J. Number Theory, 83:2 (2000), 194–201 | DOI | MR | Zbl

[2] Garaev M. Z., “O nizhnikh otsenkakh $L_1$-normy nekotorykh eksponentsialnykh summ”, Mat. zametki, 68:6 (2000), 842–850 | DOI | MR | Zbl

[3] Garaev M. Z., Kueh K-L., “On cardinality of sumsets”, J. Aust. Math. Soc., 78:2 (2005), 221–226 | DOI | MR | Zbl

[4] Hegyvári N., “On consecutive sums in sequences”, Acta math. Hung., 48 (1986), 193–200 | DOI | MR | Zbl

[5] Iosevich A., Konyagin S., Rudnev M., Ten V., “Combinatorial complexity of convex sequences”, Discrete Comput. Geom., 35:1 (2006), 143–158 | DOI | MR | Zbl

[6] Jones T. G. F., Roche-Newton O., “Improved bounds on the set $A(A+1)$”, J. Comb. Theory A, 120:3 (2013), 515–526 | DOI | MR | Zbl

[7] Konyagin S. V., Rudnev M., “On new sum–product type estimates”, SIAM J. Discrete Math., 27:2 (2013), 973–990 | DOI | MR | Zbl

[8] Li L., On a theorem of Schoen and Shkredov on sumsets of convex sets, E-print, 2011, arXiv: 1108.4382v1[math.CO]

[9] Li L., Roche-Newton O., “Convexity and a sum-product type estimate”, Acta arith., 156:3 (2012), 247–255 | DOI | MR | Zbl

[10] Murphy B., Roche-Newton O., Shkredov I., Variations on the sum-product problem, E-print, 2014, arXiv: 1312.6438v2[math.CO] | MR

[11] Schoen T., “On convolutions of convex sets and related problems”, Can. Math. Bull., 57:4 (2014), 877–883 | DOI | MR | Zbl

[12] Schoen T., Shkredov I. D., “On sumsets of convex sets”, Comb. Probab. Comput., 20:5 (2011), 793–798 | DOI | MR | Zbl

[13] Schoen T., Shkredov I. D., “Higher moments of convolutions”, J. Number Theory, 133:5 (2013), 1693–1737 | DOI | MR | Zbl

[14] Shkredov I. D., “Some new inequalities in additive combinatorics”, Moscow J. Comb. Number Theory, 3 (2013), 189–239 | MR | Zbl

[15] Shkredov I. D., “Neskolko novykh rezultatov o starshikh energiyakh”, Tr. Mosk. mat. o-va, 74, no. 1, 2013, 35–73 | MR | Zbl

[16] Solymosi J., “Sumas contra productos”, Gac. R. Soc. Mat. Esp., 12:4 (2009), 707–719 | MR | Zbl

[17] Tao T., Vu V. H., Additive combinatorics, Cambridge Univ. Press, Cambridge, 2006 | MR | Zbl