Finite subgroups of diffeomorphism groups
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected issues of mathematics and mechanics, Tome 289 (2015), pp. 235-241
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove the following: (1) the existence, for every integer $n\geq 4$, of a noncompact smooth $n$-dimensional topological manifold whose diffeomorphism group contains an isomorphic copy of every finitely presented group; (2) a finiteness theorem for finite simple subgroups of diffeomorphism groups of compact smooth topological manifolds.
@article{TM_2015_289_a13,
author = {V. L. Popov},
title = {Finite subgroups of diffeomorphism groups},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {235--241},
publisher = {mathdoc},
volume = {289},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2015_289_a13/}
}
V. L. Popov. Finite subgroups of diffeomorphism groups. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected issues of mathematics and mechanics, Tome 289 (2015), pp. 235-241. http://geodesic.mathdoc.fr/item/TM_2015_289_a13/