On elementary theories of ordinal notation systems based on reflection principles
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected issues of mathematics and mechanics, Tome 289 (2015), pp. 206-226

Voir la notice de l'article provenant de la source Math-Net.Ru

L.D. Beklemishev has recently introduced a constructive ordinal notation system for the ordinal $\varepsilon _0$. We consider this system and its fragments for smaller ordinals $\omega _n$ (towers of $\omega $-exponentiations of height $n$). These systems are based on Japaridze's well-known polymodal provability logic. They are used in the technique of ordinal analysis of the Peano arithmetic $\mathbf {PA}$ and its fragments on the basis of iterated reflection schemes. Ordinal notation systems can be regarded as models of the first-order language. We prove that the full notation system and its fragments for ordinals ${\ge }\,\omega _4$ have undecidable elementary theories. At the same time, the fragments of the full system for ordinals ${\le }\,\omega _3$ have decidable elementary theories. We also obtain results on decidability of the elementary theory for ordinal notation systems with weaker signatures.
@article{TM_2015_289_a11,
     author = {F. N. Pakhomov},
     title = {On elementary theories of ordinal notation systems based on reflection principles},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {206--226},
     publisher = {mathdoc},
     volume = {289},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2015_289_a11/}
}
TY  - JOUR
AU  - F. N. Pakhomov
TI  - On elementary theories of ordinal notation systems based on reflection principles
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2015
SP  - 206
EP  - 226
VL  - 289
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2015_289_a11/
LA  - ru
ID  - TM_2015_289_a11
ER  - 
%0 Journal Article
%A F. N. Pakhomov
%T On elementary theories of ordinal notation systems based on reflection principles
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2015
%P 206-226
%V 289
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2015_289_a11/
%G ru
%F TM_2015_289_a11
F. N. Pakhomov. On elementary theories of ordinal notation systems based on reflection principles. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected issues of mathematics and mechanics, Tome 289 (2015), pp. 206-226. http://geodesic.mathdoc.fr/item/TM_2015_289_a11/