Perturbation theory for the stress tensor in the Moon's body with tidal effects taken into account
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected issues of mathematics and mechanics, Tome 289 (2015), pp. 195-205.

Voir la notice de l'article provenant de la source Math-Net.Ru

On the basis of the seismic data from the Apollo project, we show that one can use linear elasticity theory to process these data, which yields information on the mechanical parameters of the Moon's body with an accuracy of 10%. Within this theory, we obtain a theoretical formula for the dependence of pressure on depth in the Moon's body in the presence of tidal effects. We also derive theoretical dependence of the variations of the free energy density due to tidal effects on latitude and depth. In all these formulas the contribution of shear stresses is taken into account. It turns out that the main contribution is made by the Earth tides. Estimates for the dissipation of the energy of tidal oscillations show that this energy is certainly enough to explain where the energy released in deep focus moonquakes comes from.
@article{TM_2015_289_a10,
     author = {V. P. Pavlov},
     title = {Perturbation theory for the stress tensor in the {Moon's} body with tidal effects taken into account},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {195--205},
     publisher = {mathdoc},
     volume = {289},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2015_289_a10/}
}
TY  - JOUR
AU  - V. P. Pavlov
TI  - Perturbation theory for the stress tensor in the Moon's body with tidal effects taken into account
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2015
SP  - 195
EP  - 205
VL  - 289
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2015_289_a10/
LA  - ru
ID  - TM_2015_289_a10
ER  - 
%0 Journal Article
%A V. P. Pavlov
%T Perturbation theory for the stress tensor in the Moon's body with tidal effects taken into account
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2015
%P 195-205
%V 289
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2015_289_a10/
%G ru
%F TM_2015_289_a10
V. P. Pavlov. Perturbation theory for the stress tensor in the Moon's body with tidal effects taken into account. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected issues of mathematics and mechanics, Tome 289 (2015), pp. 195-205. http://geodesic.mathdoc.fr/item/TM_2015_289_a10/

[1] Bullen K. E., Haddon R. A. W., “Derivation of an Earth model from free oscillation data”, Proc. Natl. Acad. Sci. USA, 58:3 (1967), 846–852 | DOI

[2] Stacey F. D., Davis P. M., Physics of the Earth, Cambridge Univ. Press, Cambridge, 2008 | Zbl

[3] Garcia R. F., Gagnepain-Beyneix J., Chevrot S., Lognonné P., “Very preliminary reference Moon model”, Phys. Earth Planet. Inter., 188 (2011), 96–113 | DOI

[4] Melkhior P., Zemnye prilivy, Mir, M., 1968

[5] Landau L. D., Lifshits E. M., Teoriya uprugosti, v. 7, Teoreticheskaya fizika, Nauka, M., 1987 | MR

[6] Nakamura Y., Lammlein D., Latham G., Ewing M., Dorman J., Press F., Toksöz N., “New seismic data on the state of the deep lunar interior”, Science, 181 (1973), 49–51 | DOI

[7] Lammlein D. R., Latham G. V., Dorman J., Nakamura Y., Ewing M., “Lunar seismicity, structure, and tectonics”, Rev. Geophys. Space Phys., 12:1 (1974), 1–21 | DOI

[8] Nakamura Y., “New identification of deep moonquakes in the Apollo lunar seismic data”, Phys. Earth Planet. Inter., 139 (2003), 197–205 | DOI

[9] Nakamura Y., “Far-side deep moonquakes and the deep interior of the Moon”, J. Geophys. Res., 110:E1 (2005), Pap. E01001

[10] Volkov I. A., Korotkikh Yu. G., Uravneniya sostoyaniya vyazkouprugoplasticheskikh sred s povrezhdeniyami, Fizmatlit, M., 2008

[11] Langseth M. G., Keihm S. J., Peters K., “Revised lunar heat-flow values”, Proc. 7th Lunar Sci. Conf. (Houston, 1976), v. 3, Geochim. cosmochim. acta, Suppl. 7, Pergamon, New York, 1976, 3143–3171

[12] Goins N. R., Dainty A. M., Toksöz M. N., “Seismic energy release of the Moon”, J. Geophys. Res., 86:B1 (1981), 378–388 | DOI