Cube-like incidence complexes and their groups
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometry, topology, and applications, Tome 288 (2015), pp. 248-264 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The article studies power complexes and generalized power complexes, and investigates the algebraic structure of their automorphism groups. The combinatorial incidence structures involved are cube-like, in the sense that they have many structural properties in common with higher dimensional cubes and cubical tessellations on manifolds. Power complexes have repeatedly appeared in applications.
@article{TM_2015_288_a16,
     author = {Andrew C. Duke and Egon Schulte},
     title = {Cube-like incidence complexes and their groups},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {248--264},
     year = {2015},
     volume = {288},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2015_288_a16/}
}
TY  - JOUR
AU  - Andrew C. Duke
AU  - Egon Schulte
TI  - Cube-like incidence complexes and their groups
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2015
SP  - 248
EP  - 264
VL  - 288
UR  - http://geodesic.mathdoc.fr/item/TM_2015_288_a16/
LA  - en
ID  - TM_2015_288_a16
ER  - 
%0 Journal Article
%A Andrew C. Duke
%A Egon Schulte
%T Cube-like incidence complexes and their groups
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2015
%P 248-264
%V 288
%U http://geodesic.mathdoc.fr/item/TM_2015_288_a16/
%G en
%F TM_2015_288_a16
Andrew C. Duke; Egon Schulte. Cube-like incidence complexes and their groups. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometry, topology, and applications, Tome 288 (2015), pp. 248-264. http://geodesic.mathdoc.fr/item/TM_2015_288_a16/

[1] Beineke L.W., Harary F., “The genus of the $n$-cube”, Can. J. Math., 17 (1965), 494–496 | DOI | MR | Zbl

[2] Bhuyan L.N., Agrawal D.P., “Generalized hypercube and hyperbus structures for a computer network”, IEEE Trans. Comput., 33 (1984), 323–333 | DOI | Zbl

[3] Brehm U., Kühnel W., Schulte E., “Manifold structures on abstract regular polytopes”, Aequationes math., 49 (1995), 12–35 | DOI | MR | Zbl

[4] Buchstaber V.M., Panov T.E., Torus actions and their applications in topology and combinatorics, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl

[5] Buekenhout F., Pasini A., “Finite diagram geometries extending buildings”, Handbook of incidence geometry: buildings and foundations, eds. F. Buekenhout, North-Holland, Amsterdam, 1995, 1143–1254 | DOI | MR | Zbl

[6] Coxeter H.S.M., “Regular skew polyhedra in three and four dimensions, and their topological analogues”, Proc. London Math. Soc. Ser. 2, 43 (1937), 33–62 ; Twelve geometric essays, South. Ill. Univ. Press, Carbondale, 1968 | MR | MR

[7] Coxeter H.S.M., Regular complex polytopes, 2nd ed., Cambridge Univ. Press, Cambridge, 1991 | MR | Zbl

[8] Dally W.J., “Performance analysis of $k$-ary $n$-cube interconnection networks”, IEEE Trans. Comput., 39 (1990), 775–785 | DOI

[9] Danzer L., “Regular incidence-complexes and dimensionally unbounded sequences of such. I”, Convexity and graph theory, Proc. Conf., Israel, 1981, North-Holland Math. Stud., 87, North-Holland, Amsterdam, 1984, 115–127 | DOI | MR

[10] Danzer L., Schulte E., “Reguläre Inzidenzkomplexe. I”, Geom. dedicata, 13 (1982), 295–308 | DOI | MR | Zbl

[11] Dolbilin N.P., Shtan'ko M.A., Shtogrin M.I., “Cubic subcomplexes in regular lattices”, Sov. Math., Dokl., 34 (1987), 467–469 | MR | Zbl

[12] Dolbilin N.P., Shtan'ko M.A., Shtogrin M.I., “Cubic manifolds in lattices”, Russ. Acad. Sci. Izv. Math., 44 (1995), 301–313 | MR | Zbl

[13] Duke A.C., Cube-like regular incidence complexes, PhD Thesis, Northeastern Univ., Boston, 2014 | MR

[14] Duke A., Schulte E., “Cube-like polytopes and complexes”, Mathematics of distances and applications, Proc. Conf., Varna (Bulgaria), 2012, eds. M. Deza, M. Petitjean, K. Markov, ITHEA, Sofia, 2012, 54–65

[15] Effenberger F., Kühnel W., “Hamiltonian submanifolds of regular polytopes”, Discrete Comput. Geom., 43 (2010), 242–262 | DOI | MR | Zbl

[16] Fu J.-S., Chen G.-H., Duh D.-R., “Combinatorial properties of hierarchical cubic networks”, Proc. Eighth Int. Conf. on Parallel and Distributed Systems (ICPADS 2001), IEEE Comput. Soc., Los Alamitos, CA, 2001, 525–532

[17] Ghose K., Desai K.R., “Hierarchical cubic networks”, IEEE Trans. Parallel Distrib. Syst., 6 (1995), 427–435 | DOI

[18] Grünbaum B., “Regularity of graphs, complexes and designs”, Problèmes combinatoires et théorie des graphes: Orsay, 1976, Colloq. int. CNRS, 260, Ed. CNRS, Paris, 1978, 191–197 | MR | Zbl

[19] Kühnel W., Tight polyhedral submanifolds and tight triangulations, Lect. Notes Math., 1612, Springer, Berlin, 1995 | MR | Zbl

[20] Kühnel W., Schulz C., “Submanifolds of the cube”, Applied geometry and discrete mathematics: The Victor Klee Festschrift, DIMACS Ser. Discrete Math. Theor. Comput. Sci., 4, eds. P. Gritzmann, B. Sturmfels, Amer. Math. Soc., Providence, RI, 1991, 423–432 | MR

[21] Leemans D., Residually weakly primitive and locally two-transitive geometries for sporadic groups, Mem. Cl. Sci.; Coll. 4, 11, Acad. R. Belg., Bruxelles, 2008

[22] McMullen P., Schulte E., Abstract regular polytopes, Encycl. Math. Appl., 92, Cambridge Univ. Press, Cambridge, 2002 | MR | Zbl

[23] McMullen P., Schulte E., Wills J.M., “Infinite series of combinatorially regular polyhedra in three-space”, Geom. dedicata, 26 (1988), 299–307 | DOI | MR | Zbl

[24] McMullen P., Schulz Ch., Wills J.M., “Polyhedral 2-manifolds in $E^3$ with unusually large genus”, Isr. J. Math., 46 (1983), 127–144 | DOI | MR | Zbl

[25] Monson B., Schulte E., “Finite polytopes have finite regular covers”, J. Algebr. Comb., 40 (2014), 75–82 | DOI | MR | Zbl

[26] Novikov S.P., “Topology”, Topology I, Encycl. Math. Sci., 12, Springer, Berlin, 1996, 1–319 | MR | Zbl

[27] Pisanski T., Schulte E., Ivić Weiss A., “On the size of equifacetted semi-regular polytopes”, Glas. Mat. Ser. 3, 47:2 (2012), 421–430 | DOI | MR | Zbl

[28] Ringel G., “Über drei kombinatorische Probleme am $n$-dimensionalen Würfel und Würfelgitter”, Abh. Math. Semin. Univ. Hamburg, 20 (1955), 10–19 | DOI | MR | Zbl

[29] Schulte E., “Reguläre Inzidenzkomplexe. II”, Geom. dedicata., 14 (1983), 33–56 | MR | Zbl

[30] Schulte E., “Extensions of regular complexes”, Finite geometries, Lect. Notes Pure Appl. Math., 103, eds. C.A. Baker, L.M. Batten, M. Dekker, New York, 1985, 289–305 | MR

[31] Shephard G.C., “Regular complex polytopes”, Proc. London Math. Soc. Ser. 3, 2 (1952), 82–97 | DOI | MR | Zbl

[32] Shephard G.C., Todd J.A., “Finite unitary reflection groups”, Can. J. Math., 6 (1954), 274–304 | DOI | MR | Zbl

[33] Tits J., Buildings of spherical type and finite BN-pairs, Lect. Notes Math., 386, Springer, Berlin, 1974 | MR | Zbl