Ergodic properties of visible lattice points
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometry, topology, and applications, Tome 288 (2015), pp. 184-208

Voir la notice de l'article provenant de la source Math-Net.Ru

Recently, the dynamical and spectral properties of square-free integers, visible lattice points and various generalisations have received increased attention. One reason is the connection of one-dimensional examples such as $\mathscr B$-free numbers with Sarnak's conjecture on the “randomness” of the Möbius function; another is the explicit computability of correlation functions as well as eigenfunctions for these systems together with intrinsic ergodicity properties. Here, we summarise some of the results, with focus on spectral and dynamical aspects, and expand a little on the implications for mathematical diffraction theory.
@article{TM_2015_288_a12,
     author = {Michael Baake and Christian Huck},
     title = {Ergodic properties of visible lattice points},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {184--208},
     publisher = {mathdoc},
     volume = {288},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2015_288_a12/}
}
TY  - JOUR
AU  - Michael Baake
AU  - Christian Huck
TI  - Ergodic properties of visible lattice points
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2015
SP  - 184
EP  - 208
VL  - 288
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2015_288_a12/
LA  - en
ID  - TM_2015_288_a12
ER  - 
%0 Journal Article
%A Michael Baake
%A Christian Huck
%T Ergodic properties of visible lattice points
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2015
%P 184-208
%V 288
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2015_288_a12/
%G en
%F TM_2015_288_a12
Michael Baake; Christian Huck. Ergodic properties of visible lattice points. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometry, topology, and applications, Tome 288 (2015), pp. 184-208. http://geodesic.mathdoc.fr/item/TM_2015_288_a12/