On flexible polyhedral surfaces
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometry, topology, and applications, Tome 288 (2015), pp. 171-183

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a closed orientable polyhedral surface of arbitrary genus that is embedded in three-dimensional Euclidean space and admits a one-parameter bending under which all its handles bend. This surface admits no other bendings. We also construct a flexible closed nonorientable polyhedral surface of arbitrary genus such that all its handles and Möbius strips bend during its bending.
@article{TM_2015_288_a11,
     author = {M. I. Shtogrin},
     title = {On flexible polyhedral surfaces},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {171--183},
     publisher = {mathdoc},
     volume = {288},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2015_288_a11/}
}
TY  - JOUR
AU  - M. I. Shtogrin
TI  - On flexible polyhedral surfaces
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2015
SP  - 171
EP  - 183
VL  - 288
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2015_288_a11/
LA  - ru
ID  - TM_2015_288_a11
ER  - 
%0 Journal Article
%A M. I. Shtogrin
%T On flexible polyhedral surfaces
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2015
%P 171-183
%V 288
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2015_288_a11/
%G ru
%F TM_2015_288_a11
M. I. Shtogrin. On flexible polyhedral surfaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometry, topology, and applications, Tome 288 (2015), pp. 171-183. http://geodesic.mathdoc.fr/item/TM_2015_288_a11/