On a~higher dimensional generalization of Seifert fibrations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometry, topology, and applications, Tome 288 (2015), pp. 163-170

Voir la notice de l'article provenant de la source Math-Net.Ru

The notion of generalized Seifert fibration is introduced; it is shown that the projections of certain Eschenburg $7$-manifolds $W^7_{\bar n}$ onto $\mathbb C\mathrm P^2$ define such fibrations; and their characteristic classes corresponding to the generators of $H^2(B(\mathrm U(2)/\mathbb Z_{2n});\mathbb Z)$ are defined.
@article{TM_2015_288_a10,
     author = {I. A. Taimanov},
     title = {On a~higher dimensional generalization of {Seifert} fibrations},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {163--170},
     publisher = {mathdoc},
     volume = {288},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2015_288_a10/}
}
TY  - JOUR
AU  - I. A. Taimanov
TI  - On a~higher dimensional generalization of Seifert fibrations
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2015
SP  - 163
EP  - 170
VL  - 288
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2015_288_a10/
LA  - ru
ID  - TM_2015_288_a10
ER  - 
%0 Journal Article
%A I. A. Taimanov
%T On a~higher dimensional generalization of Seifert fibrations
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2015
%P 163-170
%V 288
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2015_288_a10/
%G ru
%F TM_2015_288_a10
I. A. Taimanov. On a~higher dimensional generalization of Seifert fibrations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometry, topology, and applications, Tome 288 (2015), pp. 163-170. http://geodesic.mathdoc.fr/item/TM_2015_288_a10/