Toric origami structures on quasitoric manifolds
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometry, topology, and applications, Tome 288 (2015), pp. 16-37

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct quasitoric manifolds of dimension $6$ and higher which are not equivariantly homeomorphic to any toric origami manifold. All necessary topological definitions and combinatorial constructions are given, and the statement is reformulated in discrete geometrical terms. The problem reduces to the existence of planar triangulations with certain coloring and metric properties.
@article{TM_2015_288_a1,
     author = {A. A. Aizenberg and M. Masuda and Seonjeong Park and Haozhi Zeng},
     title = {Toric origami structures on quasitoric manifolds},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {16--37},
     publisher = {mathdoc},
     volume = {288},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2015_288_a1/}
}
TY  - JOUR
AU  - A. A. Aizenberg
AU  - M. Masuda
AU  - Seonjeong Park
AU  - Haozhi Zeng
TI  - Toric origami structures on quasitoric manifolds
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2015
SP  - 16
EP  - 37
VL  - 288
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2015_288_a1/
LA  - ru
ID  - TM_2015_288_a1
ER  - 
%0 Journal Article
%A A. A. Aizenberg
%A M. Masuda
%A Seonjeong Park
%A Haozhi Zeng
%T Toric origami structures on quasitoric manifolds
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2015
%P 16-37
%V 288
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2015_288_a1/
%G ru
%F TM_2015_288_a1
A. A. Aizenberg; M. Masuda; Seonjeong Park; Haozhi Zeng. Toric origami structures on quasitoric manifolds. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometry, topology, and applications, Tome 288 (2015), pp. 16-37. http://geodesic.mathdoc.fr/item/TM_2015_288_a1/