On the existence of solutions of unbounded optimal stopping problems
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Stochastic calculus, martingales, and their applications, Tome 287 (2014), pp. 310-319.

Voir la notice de l'article provenant de la source Math-Net.Ru

Known conditions of existence of solutions of optimal stopping problems for Markov processes assume that payoff functions are bounded in some sense. In this paper we prove weaker conditions which are applicable to unbounded payoff functions. The results obtained are applied to the optimal stopping problem for a Brownian motion with the payoff function $G(\tau,B_\tau)=|B_\tau|-c/(1-\tau)$.
@article{TM_2014_287_a17,
     author = {M. V. Zhitlukhin and A. N. Shiryaev},
     title = {On the existence of solutions of unbounded optimal stopping problems},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {310--319},
     publisher = {mathdoc},
     volume = {287},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2014_287_a17/}
}
TY  - JOUR
AU  - M. V. Zhitlukhin
AU  - A. N. Shiryaev
TI  - On the existence of solutions of unbounded optimal stopping problems
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2014
SP  - 310
EP  - 319
VL  - 287
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2014_287_a17/
LA  - ru
ID  - TM_2014_287_a17
ER  - 
%0 Journal Article
%A M. V. Zhitlukhin
%A A. N. Shiryaev
%T On the existence of solutions of unbounded optimal stopping problems
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2014
%P 310-319
%V 287
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2014_287_a17/
%G ru
%F TM_2014_287_a17
M. V. Zhitlukhin; A. N. Shiryaev. On the existence of solutions of unbounded optimal stopping problems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Stochastic calculus, martingales, and their applications, Tome 287 (2014), pp. 310-319. http://geodesic.mathdoc.fr/item/TM_2014_287_a17/

[1] Breakwell J., Chernoff H., “Sequential tests for the mean of a normal distribution. II: Large $t$”, Ann. Math. Stat., 35 (1964), 162–173 | DOI | MR | Zbl

[2] Chernoff H., “Sequential tests for the mean of a normal distribution”, Proc. Fourth Berkeley Symposium on Mathematical Statistics and Probability, V. 1, Univ. California Press, Berkeley, 1961, 79–91 | MR

[3] Chernoff H., “Sequential tests for the mean of a normal distribution. III: Small $t$”, Ann. Math. Stat., 36 (1965), 28–54 | DOI | MR | Zbl

[4] Chernoff H., “Sequential tests for the mean of a normal distribution. IV: Discrete case”, Ann. Math. Stat., 36 (1965), 55–68 | DOI | MR | Zbl

[5] Chow Y.S., Robbins H., Siegmund D., Great Expectations: The Theory of Optimal Stopping, Houghton Mifflin, Boston, 1971 ; Robbins G., Sigmund D., Chao I., Teoriya optimalnykh pravil ostanovki, Nauka, M., 1977 | MR | Zbl | MR

[6] Dynkin E.B., Osnovaniya teorii markovskikh protsessov, Fizmatgiz, M., 1959 | MR

[7] Krylov N.V., Upravlyaemye protsessy diffuzionnogo tipa, Nauka, M., 1977 | MR

[8] Peskir G., Shiryaev A., Optimal stopping and free-boundary problems, Birkhäuser, Basel, 2006 | MR | Zbl

[9] Revuz D., Yor M., Continuous martingales and Brownian motion, 3rd ed., Springer, Berlin, 2005 | Zbl

[10] Shiryaev A.N., Statisticheskii posledovatelnyi analiz: Optimalnye pravila ostanovki, 2-e izd., Nauka, M., 1976 | MR | Zbl

[11] Shiryaev A.N., Veroyatnost, 3-e izd., MTsNMO, M., 2004

[12] Zhitlukhin M.V., Posledovatelnye metody proverki statisticheskikh gipotez i obnaruzheniya razladki, Dis. ... kand. fiz.-mat. nauk, MIAN, M., 2013

[13] Zhitlukhin M.V., Muravlëv A.A., “O zadache Chernova proverki gipotez o znachenii snosa brounovskogo dvizheniya”, Teoriya veroyatn. i ee primen., 57:4 (2012), 778–788 | DOI | MR