On the existence of solutions of unbounded optimal stopping problems
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Stochastic calculus, martingales, and their applications, Tome 287 (2014), pp. 310-319
Voir la notice de l'article provenant de la source Math-Net.Ru
Known conditions of existence of solutions of optimal stopping problems for Markov processes assume that payoff functions are bounded in some sense. In this paper we prove weaker conditions which are applicable to unbounded payoff functions. The results obtained are applied to the optimal stopping problem for a Brownian motion with the payoff function $G(\tau,B_\tau)=|B_\tau|-c/(1-\tau)$.
@article{TM_2014_287_a17,
author = {M. V. Zhitlukhin and A. N. Shiryaev},
title = {On the existence of solutions of unbounded optimal stopping problems},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {310--319},
publisher = {mathdoc},
volume = {287},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2014_287_a17/}
}
TY - JOUR AU - M. V. Zhitlukhin AU - A. N. Shiryaev TI - On the existence of solutions of unbounded optimal stopping problems JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2014 SP - 310 EP - 319 VL - 287 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2014_287_a17/ LA - ru ID - TM_2014_287_a17 ER -
M. V. Zhitlukhin; A. N. Shiryaev. On the existence of solutions of unbounded optimal stopping problems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Stochastic calculus, martingales, and their applications, Tome 287 (2014), pp. 310-319. http://geodesic.mathdoc.fr/item/TM_2014_287_a17/