Buchstaber invariant theory of simplicial complexes and convex polytopes
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, convex polytopes, and related topics, Tome 286 (2014), pp. 144-206

Voir la notice de l'article provenant de la source Math-Net.Ru

The survey is devoted to the theory of a combinatorial invariant of simple convex polytopes and simplicial complexes that was introduced by V. M. Buchstaber on the basis of constructions of toric topology. We describe methods for calculating this invariant and its relation to other classical and modern combinatorial invariants and constructions, calculate the invariant for special classes of polytopes and simplicial complexes, and find a criterion for this invariant to be equal to a given small number. We also describe a relation to matroid theory, which allows one to apply the results of this theory to the description of the real Buchstaber number in terms of subcomplexes of the Alexander dual simplicial complex.
@article{TM_2014_286_a7,
     author = {N. Yu. Erokhovets},
     title = {Buchstaber invariant theory of simplicial complexes and convex polytopes},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {144--206},
     publisher = {mathdoc},
     volume = {286},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2014_286_a7/}
}
TY  - JOUR
AU  - N. Yu. Erokhovets
TI  - Buchstaber invariant theory of simplicial complexes and convex polytopes
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2014
SP  - 144
EP  - 206
VL  - 286
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2014_286_a7/
LA  - ru
ID  - TM_2014_286_a7
ER  - 
%0 Journal Article
%A N. Yu. Erokhovets
%T Buchstaber invariant theory of simplicial complexes and convex polytopes
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2014
%P 144-206
%V 286
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2014_286_a7/
%G ru
%F TM_2014_286_a7
N. Yu. Erokhovets. Buchstaber invariant theory of simplicial complexes and convex polytopes. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, convex polytopes, and related topics, Tome 286 (2014), pp. 144-206. http://geodesic.mathdoc.fr/item/TM_2014_286_a7/