Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2014_286_a4, author = {A. V. Vinogradov}, title = {Painlev\'e test for ordinary differential equations associated with the heat equation}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {75--87}, publisher = {mathdoc}, volume = {286}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2014_286_a4/} }
TY - JOUR AU - A. V. Vinogradov TI - Painlev\'e test for ordinary differential equations associated with the heat equation JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2014 SP - 75 EP - 87 VL - 286 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2014_286_a4/ LA - ru ID - TM_2014_286_a4 ER -
A. V. Vinogradov. Painlev\'e test for ordinary differential equations associated with the heat equation. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, convex polytopes, and related topics, Tome 286 (2014), pp. 75-87. http://geodesic.mathdoc.fr/item/TM_2014_286_a4/
[1] Bunkova E.Yu., Bukhshtaber V.M., “Polinomialnye dinamicheskie sistemy i obyknovennye differentsialnye uravneniya, assotsiirovannye s uravneniem teploprovodnosti”, Funkts. analiz i ego pril., 46:3 (2012), 16–37 | DOI | MR | Zbl
[2] Conte R.M., Musette M., The Painlevé handbook, Springer, Dordrecht, 2008 ; Kont R., Myuzett M., Metod Penleve i ego prilozheniya, In-t kompyut. issled., Moskva; Izhevsk, 2011 | MR | Zbl
[3] Kudryashov N.A., Analiticheskaya teoriya nelineinykh differentsialnykh uravnenii, NITs “Regulyarnaya i khaoticheskaya dinamika”, Moskva: Izhevsk, 2004
[4] Kowalevski S., “Sur le problème de la rotation d'un corps solide autour d'un point fixe”, Acta math., 12 (1889), 177–232 | DOI | MR
[5] Gambier B., Sur les équations différentielles du second ordre et du premier degré dont l'intégrale générale est a points critiques fixes, Thèse, Paris, 1909; Acta math., 33 (1910), 1–55 | DOI | MR
[6] Conte R., The Painlevé approach to nonlinear ordinary differential equations, E-print, 1997, arXiv: solv-int/9710020v1 | MR
[7] Cosgrove C.M., Chazy classes IX–XII of third-order differential equations, Res. Rep. 98-23, Univ. Sydney, Sydney, 1998.
[8] Kudryashov N.A., “Some fourth-order ordinary differential equations which pass the Painlevé test”, J. Nonlinear Math. Phys., 8, Suppl. (2001), 172–177 | DOI | MR | Zbl