Painlev\'e test for ordinary differential equations associated with the heat equation
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, convex polytopes, and related topics, Tome 286 (2014), pp. 75-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider nonlinear ordinary differential equations up to the sixth order that are associated with the heat equation. Each of them is subjected to the Painlevé analysis. For the fourth- and sixth-order equations we obtain a criterion for having the Painlevé property; for the fifth-order equation we formulate necessary conditions for passing the Painlevé test. We also present a fifth-order equation analogous to the Chazy-$3$ equation.
@article{TM_2014_286_a4,
     author = {A. V. Vinogradov},
     title = {Painlev\'e test for ordinary differential equations associated with the heat equation},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {75--87},
     publisher = {mathdoc},
     volume = {286},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2014_286_a4/}
}
TY  - JOUR
AU  - A. V. Vinogradov
TI  - Painlev\'e test for ordinary differential equations associated with the heat equation
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2014
SP  - 75
EP  - 87
VL  - 286
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2014_286_a4/
LA  - ru
ID  - TM_2014_286_a4
ER  - 
%0 Journal Article
%A A. V. Vinogradov
%T Painlev\'e test for ordinary differential equations associated with the heat equation
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2014
%P 75-87
%V 286
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2014_286_a4/
%G ru
%F TM_2014_286_a4
A. V. Vinogradov. Painlev\'e test for ordinary differential equations associated with the heat equation. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, convex polytopes, and related topics, Tome 286 (2014), pp. 75-87. http://geodesic.mathdoc.fr/item/TM_2014_286_a4/

[1] Bunkova E.Yu., Bukhshtaber V.M., “Polinomialnye dinamicheskie sistemy i obyknovennye differentsialnye uravneniya, assotsiirovannye s uravneniem teploprovodnosti”, Funkts. analiz i ego pril., 46:3 (2012), 16–37 | DOI | MR | Zbl

[2] Conte R.M., Musette M., The Painlevé handbook, Springer, Dordrecht, 2008 ; Kont R., Myuzett M., Metod Penleve i ego prilozheniya, In-t kompyut. issled., Moskva; Izhevsk, 2011 | MR | Zbl

[3] Kudryashov N.A., Analiticheskaya teoriya nelineinykh differentsialnykh uravnenii, NITs “Regulyarnaya i khaoticheskaya dinamika”, Moskva: Izhevsk, 2004

[4] Kowalevski S., “Sur le problème de la rotation d'un corps solide autour d'un point fixe”, Acta math., 12 (1889), 177–232 | DOI | MR

[5] Gambier B., Sur les équations différentielles du second ordre et du premier degré dont l'intégrale générale est a points critiques fixes, Thèse, Paris, 1909; Acta math., 33 (1910), 1–55 | DOI | MR

[6] Conte R., The Painlevé approach to nonlinear ordinary differential equations, E-print, 1997, arXiv: solv-int/9710020v1 | MR

[7] Cosgrove C.M., Chazy classes IX–XII of third-order differential equations, Res. Rep. 98-23, Univ. Sydney, Sydney, 1998.

[8] Kudryashov N.A., “Some fourth-order ordinary differential equations which pass the Painlevé test”, J. Nonlinear Math. Phys., 8, Suppl. (2001), 172–177 | DOI | MR | Zbl